区间相关问题总结

一、选择不相交区间

数轴上有n个区间[ai,bi],要求选择尽量多个区间,使得这些区间两两没有公共点

贪心策略:

按照b1<=b2<=b3…的方式排序,然后从前向后遍历,每当遇到可以加入集合的区间,就把它加入集合。(集合代表解的集合)

证明:

我们对a1,a2……的关系分以下几种情况考虑:

1、a1>a2。   此时区间2包含区间1。这种情况下显然不会选择区间2,因为选择区间1会留下更多的剩余空间。

                      不仅区间2如此,以后所有区间中只要有一个 i 满足a1 > ai,i 都不要选。

                      即此种情况下,选择区间1是明智的,与策略一致。

2、排除情况1后,一定有a1<=a2<=a3……。


                      在此条件下,如图所示,不论区间1、2的相对位置如何,选择区间1都会为以后的选择留下更大的剩余空间。

                      从而在此种情况下, 因此选择区间1也是明智的,与策略一致。

经典例题:活动安排问题->http://acm.nyist.net/JudgeOnline/problem.php?pid=14

二、区间选点问题

数轴上有n个闭区间[ai,bi]。取尽量少的点,使得每个区间内都至少有一个点(不同区间内含的点可以是同一个)。

贪心策略:

按照b1<=b2<=b3…(b相同时按a从大到小)的方式排序排序,从前向后遍历,当遇到没有加入集合的区间时,选取这个区间的右端点b。

证明:

为了方便起见,如果区间i内已经有一个点被取到,我们称区间i被满足。

1、首先考虑区间包含的情况,当小区间被满足时大区间一定被满足。所以我们应当优先选取小区间中的点,从而使大区间不用考虑。

      按照上面的方式排序后,如果出现区间包含的情况,小区间一定在大区间前面。所以此情况下我们会优先选择小区间。

      则此情况下,贪心策略是正确的。

2、排除情况1后,一定有a1<=a2<=a3……。

例题:http://acm.nyist.net/JudgeOnline/problem.php?pid=287

#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
const int MAX=10000+5;
struct activity
{
    double a,b;
};
activity act[MAX];
int cmp(activity x,activity y)
{
    return x.b<y.b;
}
int main()
{
    int n;
    double d;
    int num=1;
    while(scanf("%d%lf",&n,&d)!=EOF)
    {
        if(n==0 && d==0) break;
        int flag=0;

        for(int i=0;i<n;i++)
        {
            double x,y;
            scanf("%lf%lf",&x,&y);
            if(d<y) flag=1;
            else
            {
                 double d1=sqrt(d*d-y*y);
                 act[i].a=x-d1;
                 act[i].b=x+d1;
            }
        }
        if(flag)
        {
            printf("-1\n");
      //      num++;
            continue;
        }
        else
        {
            int cnt=0,end=-1;
            sort(act,act+n,cmp);
            for(int i=0;i<n;i++)
            {
                if(end<act[i].a)
                {
                    end=act[i].b;
                    cnt++;
                }
            }
            printf("Case %d: %d\n",num++,cnt);
        }
    }
    return 0;
}

三、区间覆盖问题

问题描述:给定一个长度为m的区间,再给出n条线段的起点和终点(注意这里是闭区间),求最少使用多少条线段可以将整个区间完全覆盖

样例:

区间长度8,可选的覆盖线段[2,6],[1,4],[3,6],[3,7],[6,8],[2,4],[3,5]

解题过程:

1将每一个区间按照左端点递增顺序排列,拍完序后为[1,4][2,4][2,6][3,5][3,6][3,7][6,8]

2设置一个变量表示已经覆盖到的区域。再剩下的线段中找出所有左端点小于等于当前已经覆盖到的区域的右端点的线段中,右端点最大的线段在加入,直到已经覆盖全部的区域

3过程:

假设第一步加入[1,4],那么下一步能够选择的有[2,6][3,5][3,6][3,7],由于7最大,所以下一步选择[3,7],最后一步只能选择[6,8],这个时候刚好达到了8退出,所选区间为3

经典例题:喷水装置->http://acm.nyist.net/JudgeOnline/problem.php?pid=12

#include <iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
struct qujian
{
    double a,b;
};
qujian q[10000+5];
int cmp(qujian x,qujian y)
{
    return x.a<y.a;
}
int main()
{
    int t,n,w,h,r,x;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d%d%d",&n,&w,&h);
        int m=0;
        for(int i=0;i<n;i++)
        {
             scanf("%d%d",&x,&r);
             double len=(double)(r*r)-(double)(h/2)*(h/2);
             if(len>=0)
             {
                 double l=sqrt(len);
                 if(x-l<0)q[m].a=0;
                 else q[m].a=x-l;
                 if(x+l>w) q[m].b=w;
                 else q[m].b=x+l;
                 m++;
             }
        }
        sort(q,q+m,cmp);
        int cnt=0,k=-1;
        double start=0;
  /*      for(int i=0;i<m;i++)
            cout<<q[i].a<<" "<<q[i].b<<endl;
  */
        while(start<w && q[k+1].a<=start)
        {
            double mm=-1; //这是陷阱,不能设0
            for(int i=k+1;i<m && q[i].a<=start;i++)
            {
                if(mm<q[i].b)
                {
                    mm=q[i].b;
                    k=i;
                }
            }
            start=mm;
            cnt++;
        }
        if(start<w) printf("0\n");
        else  printf("%d\n",cnt);
    }
    return 0;
}




<think>好的,用户想了解如何用贪心算法解决区间覆盖问题,特别是花园灌溉的那个例子。首先,我需要回忆一下贪心算法的基本步骤。根据引用[2],贪心算法通常分为分解问题、选择策略、解决子问题和组合最优解四个步骤。所以应该先分析问题,找到适合的贪心策略。 区间覆盖问题的核心是选择最少的区间来覆盖整个范围。在这个花园问题中,目标是用最少的水龙头覆盖0到n的长度。每个水龙头的覆盖范围是[i - ranges[i], i + ranges[i]],需要确保整个花园被覆盖。 接下来,我需要确定贪心策略。通常这类问题可以按照区间的起或终排序,然后选择能覆盖当前最远位置的最优区间。这里可能更适合按照区间的起排序,但需要考虑覆盖的终。或者,可能需要将区间预处理成有效覆盖范围,再按起排序,每次选择能延伸到最远的一个。 例如,在引用[4]的问题中,可能需要将每个水龙头的覆盖区间转化为实际有效的区间,排除掉那些完全在花园之外的区间。然后按照区间的起排序,每次选择能够覆盖当前起并且延伸最远的区间,直到覆盖整个花园。 需要处理几个关键:如何预处理无效区间,如何排序,以及如何贪心地选择下一个区间。同时,要注意边界情况,比如起是否被覆盖,是否存在无法覆盖的间隙。 可能的步骤是: 1. 转换每个水龙头的位置和范围为一个区间[left, right]。 2. 过滤掉那些right <= 0或者left >= n的区间,因为它们无法覆盖花园的任何部分。 3. 按照区间的左端进行排序,如果左端相同,则按右端从大到小排序。 4. 使用贪心算法,从0开始,每次选择能覆盖当前起并且延伸最远的区间,更新当前覆盖的右端,直到覆盖整个花园。 需要处理特殊情况,比如当当前覆盖的右端无法被下一个区间覆盖时,返回-1。 举个例子,比如n=5,ranges=[3,1,2,1,0,0],那么各个水龙头的区间是: 索引0: [-3,3],但有效的是[0,3] 索引1: [0,2] 索引2: [0,4] 索引3: [2,4] 索引4: [4,4] 索引5: [5,5] 预处理后的有效区间是: [0,3], [0,2], [0,4], [2,4], [4,4], [5,5] 排序后可能是按左端升序,右端降序: [0,4], [0,3], [0,2], [2,4], [4,4], [5,5] 然后开始选择: 初始current_end=0,需要覆盖到5。 第一次在左端<=0的区间中选右端最大的,即0-4,current_end=4,计数1。 接下来需要覆盖从4开始,找左端<=4的区间,最大的右端是4(区间4-4),但只能覆盖到4,不够,所以需要下一个区间是5-5,这样覆盖到5。计数加1,总共有2个。但n是5,所以需要覆盖到5,这里最后一个区间是5-5,满足条件。但可能还有更优的选择?比如是否还有覆盖到5的其他区间? 或者可能在处理过程中,当current_end >=n时就停止。比如在这个例子中,当选择到0-4后,current_end=4,接下来找左端<=4的区间,最大的右端是4(区间4-4),此时current_end仍为4,无法继续推进,这时候需要看是否有更大的右端。比如是否有区间左端<=4,右端>=5的?可能没有,所以无法覆盖到5,返回-1?但用户的问题中的示例可能有解? 可能我在这里需要再仔细想一下例子是否正确。或者用户的问题中的例子可能不同,比如不同的ranges数组。 可能我的思路是正确的,但需要更详细的步骤说明,并给出代码示例。 总结解题步骤: 1. 预处理所有水龙头的有效区间,排除无效部分(比如左端超过n或右端小于0)。 2. 按左端排序,相同左端按右端降序。 3. 初始化当前覆盖起start=0,当前最远end=0,计数器count=0。 4. 遍历排序后的区间,每次在左端<=start的区间中选最大的右端,更新start为end,count+1,直到end >=n。 5. 如果中间无法找到覆盖的区间,返回-1。 这样可能更准确。 现在需要将这些步骤转化为具体的说明,并给出一个示例,比如引用中的问题,然后给出代码实现。 比如,对于n=5,ranges=[3,1,2,1,0,0],各个水龙头的位置是0到5: 位置0的范围是3,所以区间是0-3 → [0,3] 位置1的范围是1 → [0,2] 位置2的范围是2 → [0,4] 位置3的范围是1 → [2,4] 位置4的范围是0 → [4,4] 位置5的范围是0 → [5,5] 将这些区间处理后,有效区间为: [0,3], [0,2], [0,4], [2,4], [4,4], [5,5] 排序后按左端升序,右端降序: [0,4], [0,3], [0,2], [2,4], [4,4], [5,5] 现在开始贪心选择: 初始start=0,end=0,count=0。 遍历所有区间,找到左端<=start的区间中最大的右端: 第一次迭代,start=0: 可以选区间[0,4],end=4,count=1。此时start更新为end=4。 检查是否end >=n=5?没有,继续。 第二次迭代,start=4: 寻找左端<=4的区间,最大的右端。剩下的区间中,[2,4]左端2<=4,右端4;[4,4]左端4<=4,右端4;[5,5]左端5>4,不能选。 最大的右端是4,所以无法推进end,此时无法覆盖到5,返回-1? 但原题中的示例可能不同,可能用户的问题中的例子需要正确解。 可能我举的例子是错误的,需要另一个正确的例子。比如,假设n=5,ranges=[3,1,1,1,0,0],那么: 位置0:[-3,3]→[0,3] 位置1:[0,2] 位置2:[1,3] 位置3:[2,4] 位置4:[4,4] 位置5:[5,5] 有效区间排序后: [0,3], [0,2], [1,3], [2,4], [4,4], [5,5] 贪心步骤: 第一次选左端<=0的最大右端是3,count=1,end=3。 此时start更新为3。 第二次选左端<=3的区间,最大的右端是4(区间2-4),count=2,end=4。 此时start=4。 第三次选左端<=4的区间,最大的右端是4(区间4-4),无法推进,但还有区间5-5,左端5>4,无法覆盖,所以无法到达5,返回-1?或者如果有区间在4-5之间? 或者可能另一个例子,比如n=5,ranges=[3,2,1,3,0,0]。此时: 位置0的区间是0-3 位置1的区间是-1到3 → 有效0-3 位置2的区间是1-3 位置3的区间是0-6 → 有效0-5(因为n=5) 位置4的区间是4-4 位置5的区间是5-5 有效区间排序后: 左端升序,右端降序: 0-5(位置3),0-3(位置0),0-3(位置1),1-3(位置2),4-4,5-5. 贪心选择: 第一次选左<=0的最大右是5,count=1,end=5,此时已覆盖n=5,成功,返回1. 这样例子是正确的,说明贪心算法的有效性。 在代码实现时,需要注意预处理每个区间,确保其有效,并且按左端排序,右端降序。然后遍历,每次找到能覆盖当前start的最远end。 综上,解题思路是预处理区间,排序,然后贪心选择。现在需要将这些步骤清晰地写出来,并给出代码示例。同时,用户可能需要相关问题,比如优化、不同的区间情况等。</think>### 贪心算法解决区间覆盖问题 #### 问题描述 给定花园长度 $n$ 和水龙头覆盖范围数组 $ranges$,每个水龙头 $i$ 可灌溉区间 $[i - ranges[i], i + ranges[i]]$,求灌溉整个区间 $[0,n]$ 所需的最少水龙头数目,若无法完成返回 $-1$[^4]。 #### 解题思路 1. **预处理有效区间** 转换每个水龙头位置 $i$ 的覆盖区间为有效区间 $[\max(0, i - ranges[i]), \min(n, i + ranges[i})]$,过滤掉右端 $\leq 0$ 或左端 $\geq n$ 的无效区间。 2. **排序策略** 按左端升序排列,若左端相同则按右端降序排列,确保优先选择覆盖范围更广的区间。 3. **贪心选择** - 初始化当前覆盖终 $current\_end = 0$,计数器 $count = 0$。 - 遍历排序后的区间,每次选择左端 $\leq current\_end$ 且右端最大的区间。 - 更新 $current\_end$ 为该区间的右端,计数器加 $1$。 - 若遍历结束后 $current\_end < n$,返回 $-1$。 #### 示例代码 ```python def min_taps(n, ranges): # 预处理有效区间 intervals = [] for i in range(n + 1): left = max(0, i - ranges[i]) right = min(n, i + ranges[i]) if left < right: # 过滤无效区间 intervals.append((left, right)) # 按左端升序,右端降序排列 intervals.sort(key=lambda x: (x[0], -x[1])) count = 0 current_end = 0 i = 0 while current_end < n: max_right = current_end # 寻找左端 <= current_end 的区间中右端最大的 while i < len(intervals) and intervals[i][0] <= current_end: max_right = max(max_right, intervals[i][1]) i += 1 if max_right == current_end: # 无法推进覆盖范围 return -1 count += 1 current_end = max_right return count ``` #### 示例分析 以 $n=5$, $ranges=[3,1,1,3,0,0]$ 为例: 1. 预处理得到有效区间: $$[(0,3), (0,3), (1,3), (0,5), (4,4), (5,5)]$$ 2. 排序后: $$[(0,5), (0,3), (0,3), (1,3), (4,4), (5,5)]$$ 3. 贪心选择过程: - 第一次选择 $(0,5)$,覆盖至 $5$,直接完成任务,返回 $1$。 #### 算法复杂度 - 时间复杂度:$O(n \log n)$,主要来自排序操作。 - 空间复杂度:$O(n)$,存储预处理后的区间
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值