POJ1321 棋盘问题(DFS)

6 篇文章 0 订阅
2 篇文章 0 订阅
棋盘问题
Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 29625 Accepted: 14690

Description

在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别。要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有可行的摆放方案C。

Input

输入含有多组测试数据。  
每组数据的第一行是两个正整数,n k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n  
当为-1 -1时表示输入结束。  
随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。  

Output

对于每一组数据,给出一行输出,输出摆放的方案数目C (数据保证C<2^31)。

Sample Input

2 1
#.
.#
4 4
...#
..#.
.#..
#...
-1 -1

Sample Output

2
1
题意:n*n的棋盘放k个棋子问有几种方案,其中#表示可放棋子的地方,一行一列只能有一个棋子
和八皇后问题挺像的,vis【】标记列是否有棋子,然后就可以逐行进行搜索了,
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <string.h>
using namespace std;
int g[10][10],vis[10];
int n,k;
long long ans;
void dfs(int x,int cnt)
{
    if(cnt == k)
    {
        ans ++;
        return;
    }
    if(k - cnt > n - x)//如果还需要放的棋子数大于剩下的行数就没必要再向下一行搜了
        return ;     //加了一个顿时0ms,不加是32ms
    for(int i = x; i < n; i++)
    {
         for(int j = 0; j < n; j++)
         {
             if(g[i][j] && vis[j] == 0)
             {
                 vis[j] = 1;
                 dfs(i + 1,cnt + 1);
                 vis[j] = 0;
             }
         }
    }
}
int main()
{
    while(scanf("%d%d", &n, &k) != EOF)
    {
        if(n == -1 && k == -1)
            break;
        memset(g,0,sizeof(g));
        char ch;
        getchar();
        for(int i = 0; i < n; i++)
        {
            for(int j = 0; j < n; j++)
            {
                scanf("%c", &ch);
                if(ch == '#')
                    g[i][j] = 1;
            }
            getchar();
        }
        ans = 0;
        dfs(0,0);
        printf("%I64d\n",ans);
    }
    return 0;
}

POJ 1321 排兵布阵问题可以使用 DFS 算法求解。 题目要求在一个 n x n 的棋盘上,放置 k 个棋子,其中每行、每列都最多只能有一个棋子。我们可以使用 DFS 枚举每个棋子的位置,对于每个棋子,尝试将其放置在每一行中未被占用的位置上,直到放置了 k 个棋子。在 DFS 的过程中,需要记录每行和每列是否已经有棋子,以便在尝试放置下一个棋子时进行判断。 以下是基本的 DFS 模板代码: ```python def dfs(row, cnt): global ans if cnt == k: ans += 1 return for i in range(row, n): for j in range(n): if row_used[i] or col_used[j] or board[i][j] == '.': continue row_used[i] = col_used[j] = True dfs(i + 1, cnt + 1) row_used[i] = col_used[j] = False n, k = map(int, input().split()) board = [input() for _ in range(n)] row_used = [False] * n col_used = [False] * n ans = 0 dfs(0, 0) print(ans) ``` 其中,row 代表当前尝试放置棋子的行数,cnt 代表已经放置的棋子数量。row_used 和 col_used 分别表示每行和每列是否已经有棋子,board 则表示棋盘的状态。在尝试放置棋子时,需要排除掉无法放置的位置,即已经有棋子的行和列,以及棋盘上标记为 '.' 的位置。当放置了 k 个棋子时,即可计数一次方案数。注意,在回溯时需要将之前标记为已使用的行和列重新标记为未使用。 需要注意的是,在 Python 中,递归深度的默认限制为 1000,可能无法通过本题。可以通过以下代码来解除限制: ```python import sys sys.setrecursionlimit(100000) ``` 完整代码如下:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值