棋盘问题
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 29625 | Accepted: 14690 |
Description
在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别。要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有可行的摆放方案C。
Input
输入含有多组测试数据。
每组数据的第一行是两个正整数,n k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n
当为-1 -1时表示输入结束。
随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。
每组数据的第一行是两个正整数,n k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n
当为-1 -1时表示输入结束。
随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。
Output
对于每一组数据,给出一行输出,输出摆放的方案数目C (数据保证C<2^31)。
Sample Input
2 1 #. .# 4 4 ...# ..#. .#.. #... -1 -1
Sample Output
2 1
题意:n*n的棋盘放k个棋子问有几种方案,其中#表示可放棋子的地方,一行一列只能有一个棋子
和八皇后问题挺像的,vis【】标记列是否有棋子,然后就可以逐行进行搜索了,
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <string.h> using namespace std; int g[10][10],vis[10]; int n,k; long long ans; void dfs(int x,int cnt) { if(cnt == k) { ans ++; return; } if(k - cnt > n - x)//如果还需要放的棋子数大于剩下的行数就没必要再向下一行搜了 return ; //加了一个顿时0ms,不加是32ms for(int i = x; i < n; i++) { for(int j = 0; j < n; j++) { if(g[i][j] && vis[j] == 0) { vis[j] = 1; dfs(i + 1,cnt + 1); vis[j] = 0; } } } } int main() { while(scanf("%d%d", &n, &k) != EOF) { if(n == -1 && k == -1) break; memset(g,0,sizeof(g)); char ch; getchar(); for(int i = 0; i < n; i++) { for(int j = 0; j < n; j++) { scanf("%c", &ch); if(ch == '#') g[i][j] = 1; } getchar(); } ans = 0; dfs(0,0); printf("%I64d\n",ans); } return 0; }