- 博客(33)
- 收藏
- 关注
原创 Lecture5-3Effective number of hypotheses
Dichotomies={hypothesis h:→{x,o}}\mathcal{H} = \{\textrm{hypothesis } h: \mathcal{X} \rightarrow \{x,o\}\}Call: h(x1,x2,...,xN)=(h(x1),h(x2),...,h(xN))∈{x,o}Nh(\mathbf{x_1, x_2, ... , x_N}) = (h(\m
2015-09-29 22:49:41
538
原创 Lecture5-2Effective number of lines
Where did MM come from?Where did Union Bound fail? Union Bound Over-Estimating!! Can we group hypotheses by kind?How many lines are there?For only one point x1x_1, how many different lines are t
2015-09-29 22:16:08
321
原创 Lecture5-1Recap and Preview
Flow Chart Recap2 Central QuestionsLearning is split into 2 questions - Can we make sure that Ein≈EoutE_{in} \approx E_{out}? - Can we make EinE_{in} small enough?Trade off on MMSmall MM :) few ch
2015-09-27 21:47:06
240
原创 Lecture4-4Connection to Real Learning
Multiple hhReal Learning like PLA, what about when getting all green(right)?Bad Sample:EinE_{in} and EoutE_{out} far away – can get worse results. Eout=12E_{out} = \frac{1}{2}, but getting all heads(
2015-09-22 21:57:48
256
原创 Lecture4-3Connection to Learning
Bin Model vs. Learningunknown orange prob μ\mu ↔\leftrightarrow fixed hypothesis h(x)=?h(\mathbf{x}) =? target f(x)f(\mathbf{x})marbel ∈\in bin ↔\leftrightarrow x∈\mathbf{x} \in \mathcal{X}orange ↔
2015-09-20 22:32:00
196
原创 Lecture4-2Probability to rescure
Inferring something unknownDifficult to infer unknown target ff outside \mathcal{D}, can we infer something unknown in other scenarios?How to infer the orange probability?SamplingBin: ASSUME orange p
2015-09-20 13:26:02
240
1
原创 Lecture4-1Learning is impossible?
Puzzle problemNo free lunchWe all have to be aware that ff is unknown, and any possible ff can happen according to the previous examples outside \mathcal{D}(no free lunch). So we have to make some ass
2015-09-20 12:28:07
301
原创 Lecture3-3Learning with different input space
Concrete featureRaw featureAbstract featureNeed to extract real concrete features from abstract features Mini SummarySummary
2015-09-20 12:10:21
242
原创 Lecture3-3Learning with different protocols
Batch LearningOnline LearningActive LearningMini Summary
2015-09-20 11:54:35
292
原创 Lecture3-1Learning with different data label
Supervised LearningUnsupervised Learning Semi-supervised LearningReinforcement LearningA very different but natural way of learningTeach your dog: SIT DOWNcannot easily show the dog that yn=y_n = sit
2015-09-20 11:36:59
233
原创 Lecture3-1Learning with different output space
Binary ClassificationMulticlass Classification: Coin Recognition ProblemRegression: Patient Recovery Prediction ProblemStructured Learning: TaggingMini Summary
2015-09-20 10:45:08
381
原创 Lecture2-4Non-Separable Data
In reality, we don’t know if \mathcal{D} is linear separable, and we don’t know what T exactly is, because we cannot calculate ρ\rho, which depends on wf\mathbf{w_f}.Flow Chart 2: With Noise What abou
2015-09-19 23:21:41
263
原创 Lecture2-3Guarantee of PLA
Linear SeparableIf PLA halts(no mistakes),(necessary condition) \mathcal{D} allows some w\mathbf{w} to make no mistakeCall \mathcal{D} linear separable Linear Separable ⟺\mathcal{D} \Longleftrigh
2015-09-19 22:11:03
361
原创 Lecture2-2Perceptron Learning Algorithm
Select gg from \mathcal{H}=\mathcal{H}=all possible perceptrons, g=?g = ?want g≈fg \approx falmost necessary: g≈fg \approx f on \mathcal{D}, ideally g(xn)=f(xn)=yng(x_n)=f(x_n)=y_nDifficult: \m
2015-09-19 18:30:07
361
原创 Lecture2-1Perceptron Hypothesis Set
Credit Approval RevisitedA simple hypothesis set: PerceptronFor x=(x1,x2,...,xd)\mathbf{x} = (x_1, x_2, ..., x_d), ‘features of customer’, compute a weight ‘score’ and - approve credit if ∑di=1wixi>th
2015-09-15 22:37:17
284
原创 U1-Introduction
Anecdotal EvidenceAssumption that may be real but is only based on limited number of samples, which is not representative. Population and samplesKeysPopulationSampleDesignScopeExploratory data an
2015-09-14 21:36:46
151
原创 week1-10Theory of algorithms
Type of analysesBest case: lower boundWorst case: upper boundAverage case: expected cost for random inputActual data might not match input model?Need to understand the input to effectively process
2015-09-13 12:04:16
217
原创 Week1-9Order-of-Growth classifications
Common Order-of-Growth classificationsSmall set of functions 1,logN,N,NlogN,N2,N3,abN1, logN, N, NlogN, N^2, N^3, ab^Nlinearithmic and linear scale with the input size!!Binary SearchImplementationpu
2015-09-13 11:31:50
500
原创 Week1-8Mathematical Model
Mathematical model for running timeCost of basic operations And there are many many other ops that can be calculated.Example:1-SUM2-SUM Maybe we should just count the ones that are most expensive!!!
2015-09-13 00:03:39
292
原创 Lecture 1-5ML and Other Fields
ML and Data MiningMachine Learning Use data to compute hypothesis gg that approximates target ffText Mning Use (huge) data to find property that is interestingif ‘interesting property’ same as ‘hy
2015-09-12 23:47:57
286
原创 Lecture1-4Components of ML
Components of ML: Metaphor using credit approvalThe bank has the applicant information, and there is unknown pattern to be learned, which is used to solve the final question: whether approving credit
2015-09-12 23:30:41
253
原创 week1-7Observations
Example: 3-SUMGiven N distinct integers, how many triples sum to exactly zero?Brute Force AlgorithmMeasuring the running timeWe can calculate the real running time for various input sizes and make a pl
2015-09-12 17:32:40
288
1
原创 Week1-5Union-Find Applications
ApplicationsPercolationlikelihood of percolationDepends on the site vacancy probability p.Percolation phase transition No analytic solutions, only computer simulation answers!!Solution: Monte Carlo
2015-09-12 16:16:36
233
原创 Week1-4Qucik-Union Improvments
Improvement 1: weightingweighted quick unionmodify quick-union to avoid tall treeskeep track of size of each tree(number of each objects)balance by linking root of smaller tree to the root of larger
2015-09-11 23:22:38
279
原创 Lecture1-3Applications of ML
Applications of daily needsFooddata: twitter data(words + location)skill: tell food poisoning likeliness of restaurant properlyClothing-data: sales figures + client surveys -skill: give good fashio
2015-09-11 23:13:10
272
原创 Week1-3Quick Union
Data StructureInteger array id[] of size NRoot of i isid[id[id[…id[i]…]]](keep going until it doesn’t change)OperationsFind( p, q ): check if p and q have the same rootUnion( p, q ): to merge comp
2015-09-09 22:32:15
283
原创 Week1-2Quick Find
Quick Find(eager approach)Data Structure-Integer Array id[] of size N -Interpretation: p and q are connected iff they have the same idExample Findconnected( p, q )Check if p and q have the same idUni
2015-09-05 17:05:09
250
原创 Week1-1Dynamic Connectivity
Given a set of N objects, main operations are:-Union Command: Connect 2 objects: union( a, b ) -Find/Connected query: is there a path connecting the 2 objects? connect ( a, b )Answer the question if t
2015-09-05 16:12:49
263
原创 Week0-1Course Overview
Focus-Algorithm -Data Structure The course is separated into 2 parts. Why study algorithm?-To solve problems that could not be otherwise addressed. -For intellectual stimulation. -To become a prof
2015-09-04 23:29:55
283
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人