题目概述
有一棵 n 个点的有根树,其中
1 x:把点x到根节点的路径上所有的点染上一种没有用过的新颜色。
2 x y:求x到y的路径的权值。
3 x y:在以x为根的子树中选择一个点,使得这个点到根节点的路径权值最大,求最大权值。
解题报告
这操作1怎么这么奇怪又这么眼熟啊……没错,这货不是LCT的Access吗?所以我们可以用LCT来维护这棵树,那么每个节点到根的颜色数
ps:不能用LCT求lca,否则会影响虚实边分布。再ps:我太naive了,Access的时候以为右儿子就是实际的实儿子,其实应该是右儿子Splay中“最左边”的节点。
示例程序
#include<cstdio>
#include<cctype>
#include<vector>
#include<algorithm>
using namespace std;
const int maxn=100000,Log=17;
int n,te,dep[maxn+5];vector<int> lnk[maxn+5];
int ti,Lt[maxn+5],Rt[maxn+5],who[maxn+5],f[maxn+5][Log+5];
int son[maxn+5][2],fa[maxn+5],MAX[(maxn<<2)+5],tag[(maxn<<2)+5];
#define Eoln(x) ((x)==10||(x)==13||(x)==EOF)
inline char readc(){
static char buf[100000],*l=buf,*r=buf;
if (l==r) r=(l=buf)+fread(buf,1,100000,stdin);
if (l==r) return EOF;return *l++;
}
inline int readi(int &x){
int tot=0,f=1;char ch=readc(),lst='+';
while (!isdigit(ch)) {if (ch==EOF) return EOF;lst=ch;ch=readc();}
if (lst=='-') f=-f;
while (isdigit(ch)) tot=(tot<<3)+(tot<<1)+ch-48,ch=readc();
return x=tot*f,Eoln(ch);
}
#define Add(x,y) lnk[x].push_back(y)
void Dfs(int x,int pre=0){
Lt[x]=++ti;who[ti]=x;dep[x]=dep[pre]+1;
f[x][0]=pre;for (int j=1;j<=Log;j++) f[x][j]=f[f[x][j-1]][j-1];
for (int j=0;j<lnk[x].size();j++) if (lnk[x][j]!=pre) Dfs(lnk[x][j],x);
Rt[x]=ti;fa[x]=pre;
}
inline int LCA(int x,int y){
if (dep[x]<dep[y]) swap(x,y);
for (int j=Log;j>=0&&dep[x]>dep[y];j--) if (dep[f[x][j]]>=dep[y]) x=f[x][j];
if (x==y) return x;
for (int j=Log;j>=0;j--) if (f[x][j]!=f[y][j]) x=f[x][j],y=f[y][j];
return f[x][0];
}
#define LS (p<<1)
#define RS (p<<1|1)
#define Pushup(p) MAX[p]=max(MAX[LS],MAX[RS])
void Build(int L,int R,int p=1){
int mid=L+(R-L>>1);if (L==R) {MAX[p]=dep[who[mid]];return;}
Build(L,mid,LS);Build(mid+1,R,RS);Pushup(p);
}
inline void Pushdown(int p){
if (!tag[p]) return;int now=tag[p];tag[p]=0;
MAX[LS]+=now;tag[LS]+=now;MAX[RS]+=now;tag[RS]+=now;
}
void Update(int L,int R,int k,int l=1,int r=n,int p=1){
if (R<l||r<L) return;if (L<=l&&r<=R) {MAX[p]+=k;tag[p]+=k;return;}int mid=l+(r-l>>1);
Pushdown(p);Update(L,R,k,l,mid,LS);Update(L,R,k,mid+1,r,RS);Pushup(p);
}
int Askseg(int L,int R,int l=1,int r=n,int p=1){
if (R<l||r<L) return 0;if (L<=l&&r<=R) return MAX[p];int mid=l+(r-l>>1);
Pushdown(p);return max(Askseg(L,R,l,mid,LS),Askseg(L,R,mid+1,r,RS));
}
#define is_ro(p) ((p)!=son[fa[p]][0]&&(p)!=son[fa[p]][1])
#define Son(p) ((p)==son[fa[p]][1])
inline void Rotate(int t){
int p=fa[t],d=Son(t);son[p][d]=son[t][d^1];son[t][d^1]=p;
if (!is_ro(p)) son[fa[p]][Son(p)]=t;
if (son[p][d]) fa[son[p][d]]=p;fa[t]=fa[p];fa[p]=t;
}
inline void Splay(int p){
for (int pre=fa[p];!is_ro(p);Rotate(p),pre=fa[p])
if (!is_ro(pre)) Rotate(Son(p)==Son(pre)?pre:p);
}
inline void Access(int p){
for (int lst=0;p;lst=p,p=fa[p]){
Splay(p);int &now=son[p][1],x;
if (now) {x=now;while (son[x][0]) x=son[x][0];Update(Lt[x],Rt[x],1);}
if (lst) {x=lst;while (son[x][0]) x=son[x][0];Update(Lt[x],Rt[x],-1);}
now=lst;
}
}
#define Ask(x) (Askseg(Lt[x],Lt[x]))
int main(){
freopen("program.in","r",stdin);
freopen("program.out","w",stdout);
readi(n);readi(te);
for (int i=1,x,y;i<n;i++) readi(x),readi(y),Add(x,y),Add(y,x);
for (Dfs(1),Build(1,n);te;te--){
int td,x,y,lca;readi(td);readi(x);
if (td==1) Access(x); else if (td==3) printf("%d\n",Askseg(Lt[x],Rt[x]));
else readi(y),lca=LCA(x,y),printf("%d\n",Ask(x)+Ask(y)-(Ask(lca)<<1)+1);
}
return 0;
}

本文介绍了一种结合LCT树与线段树的数据结构算法,用于解决一类涉及有根树中路径权值计算的问题。该算法通过LCT树维护树的结构并实现快速路径操作,同时利用线段树高效处理子树的最大值查询。
839

被折叠的 条评论
为什么被折叠?



