【深度学习】4:BP神经网络+sklearn实现手写数字识别

前言:上一篇【深度学习】3:BP神经网络识别MNIST数据集程序跑的太慢了,而且占内存很大,所以再介绍一篇BP神经网络+sklearn做图片识别的程序。大家仅供参考。
-----------------------------------------------------------------------------------------------------------------------------------------
-----------------------------------------------------------------------------------------------------------------------------------------
重要提示:安装sklearn前,要先安装numpy和scipy这两个库
-----------------------------------------------------------------------------------------------------------------------------------------
-----------------------------------------------------------------------------------------------------------------------------------------

1、载入数据集

from sklearn.datasets import load_digits
#载入数据:8*8的数据集
digits = load_digits()
X = digits.data
Y = digits.target

这个数据集是sklearn里面带的数据集,图片大小是8*8的,将数据项存入X,将标签项存入Y。这个不要额外下载,声明就可以使用。

2、数据归一化处理

#输入数据归一化
X -= X.min()
X /= X.max()
  1. 数据为什么要归一化处理?当数据集的数值过大,即便乘以较小的权重后仍然还是一个很大的数时,当代入sigmoid激活函数中,激活函数的输出就趋近于1,不利于学习
  2. 怎么操作使数据归一化?原始数据集中每一个数据先减去最小的那个数,将得到的新数据集再除以最大的那个数既可(大家可以举个例子:2,7,5,9。试一试就知道)

3、切分数据,与标签二值化

#sklearn切分数据
X_train,X_test,y_train,y_test = train_test_split(X,Y)
#标签二值化:将原始标签(十进制)转为新标签(二进制)
labels_train = LabelBinarizer().fit_transform(y_train)
labels_test = LabelBinarizer().fit_transform(y_test)
  • sklearn中直接一条语句就可以切分数据了:将数据项、标签项切分出来,3/4做训练集,剩下的1/4做测试集。
  • 为什么要标签二值化?因为我们存入的标签是0,1,2,,,9这十个数,而计算机的识别都是0-1字符串,所以满足计算机识别分类,就需要进行标签二值化。
  • 怎么标签二值化?举例最好说明:用长度为10的字符串表示如下:
    0 -->1000000000;3 -->0001000000;8 -->0000000010

4、打印输出图片

from sklearn.datasets import load_digits
import pylab as pl

#载入数据集
digits = load_digits()
print(digits.data.shape)

#灰度化图片
pl.gray()
pl.matshow(digits.images[0])
pl.show()

可以查看sklearn数据集里包含多少个数据,也可以通过改变索引,打印出不同的图片(由于图片尺寸是8*8的,图像比较模糊)

5、源码与效果展示

# -*- coding:utf-8 -*-
# -*- author:zzZ_CMing
# -*- 2018/01/24;9:09
# -*- python3.5

import numpy as np
from sklearn.datasets import load_digits
from sklearn.preprocessing import LabelBinarizer #标签二值化
from sklearn.model_selection import train_test_split   #切割数据,交叉验证法

def sigmoid(x):
    return 1/(1+np.exp(-x))

def dsigmoid(x):
    return x*(1-x)

class NeuralNetwork:
    def __init__(self,layers):#(64,100,10)
        #权重的初始化,范围-1到1:+1的一列是偏置值
        self.V = np.random.random((layers[0] + 1, layers[1]+1))*2 - 1
        self.W = np.random.random((layers[1] + 1, layers[2])) * 2 - 1

    def train(self,X,y,lr=0.11,epochs=10000):
        #添加偏置值:最后一列全是1
        temp = np.ones([X.shape[0],X.shape[1]+1])
        temp[:,0:-1] = X
        X = temp

        for n in range(epochs+1):
            #在训练集中随机选取一行(一个数据):randint()在范围内随机生成一个int类型
            i = np.random.randint(X.shape[0])
            x = [X[i]]
            #转为二维数据:由一维一行转为二维一行
            x = np.atleast_2d(x)

            # L1:输入层传递给隐藏层的值;输入层64个节点,隐藏层100个节点
            # L2:隐藏层传递到输出层的值;输出层10个节点
            L1 = sigmoid(np.dot(x, self.V))
            L2 = sigmoid(np.dot(L1, self.W))

            # L2_delta:输出层对隐藏层的误差改变量
            # L1_delta:隐藏层对输入层的误差改变量
            L2_delta = (y[i] - L2) * dsigmoid(L2)
            L1_delta = L2_delta.dot(self.W.T) * dsigmoid(L1)

            # 计算改变后的新权重
            self.W += lr * L1.T.dot(L2_delta)
            self.V += lr * x.T.dot(L1_delta)

            #每训练1000次输出一次准确率
            if n%1000 == 0:
                predictions = []
                for j in range(X_test.shape[0]):
                    #获取预测结果:返回与十个标签值逼近的距离,数值最大的选为本次的预测值
                    o = self.predict(X_test[j])
                    #将最大的数值所对应的标签返回
                    predictions.append(np.argmax(o))
                #np.equal():相同返回true,不同返回false
                accuracy = np.mean(np.equal(predictions,y_test))
                print('迭代次数:',n,'准确率:',accuracy)

    def predict(self,x):
        # 添加偏置值:最后一列全是1
        temp = np.ones([x.shape[0] + 1])
        temp[0:-1] = x
        x = temp
        # 转为二维数据:由一维一行转为二维一行
        x = np.atleast_2d(x)

        # L1:输入层传递给隐藏层的值;输入层64个节点,隐藏层100个节点
        # L2:隐藏层传递到输出层的值;输出层10个节点
        L1 = sigmoid(np.dot(x, self.V))
        L2 = sigmoid(np.dot(L1, self.W))
        return L2

#载入数据:8*8的数据集
digits = load_digits()
X = digits.data
Y = digits.target
#输入数据归一化:当数据集数值过大,乘以较小的权重后还是很大的数,代入sigmoid激活函数就趋近于1,不利于学习
X -= X.min()
X /= X.max()

NN = NeuralNetwork([64,100,10])
#sklearn切分数据
X_train,X_test,y_train,y_test = train_test_split(X,Y)
#标签二值化:将原始标签(十进制)转为新标签(二进制)
labels_train = LabelBinarizer().fit_transform(y_train)
labels_test = LabelBinarizer().fit_transform(y_test)

print('开始训练')
NN.train(X_train,labels_train,epochs=20000)
print('训练结束')

这里写图片描述

这个运行速度要比TensorFlow快上许多,识别的成功率也高,主要因为数据集相差很大——数据集个数(tf是60000+,sklearn是1900+);数据集图片的大小(tf是2828,sklearn是88)

系列推荐:

【监督学习】1:KNN算法实现手写数字识别的三种方法
-----------------------------------------------------------------------------------------------------------------------------------------
【无监督学习】1:K-means算法原理介绍,以及代码实现
【无监督学习】2:DBSCAN算法原理介绍,以及代码实现
【无监督学习】3:Density Peaks聚类算法(局部密度聚类)
-----------------------------------------------------------------------------------------------------------------------------------------
【深度学习】1:感知器原理,以及多层感知器解决异或问题
【深度学习】2:BP神经网络的原理,以及异或问题的解决
【深度学习】3:BP神经网络识别MNIST数据集
【深度学习】4:BP神经网络+sklearn实现数字识别
【深度学习】5:CNN卷积神经网络原理、MNIST数据集识别
【深度学习】8:CNN卷积神经网络识别sklearn数据集(附源码)
【深度学习】6:RNN递归神经网络原理、MNIST数据集识别
【深度学习】7:Hopfield神经网络(DHNN)原理介绍
-----------------------------------------------------------------------------------------------------------------------------------------
TensorFlow框架简单介绍
-----------------------------------------------------------------------------------------------------------------------------------------

  • 5
    点赞
  • 75
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
### 回答1: BP神经网络是一种常用的人工神经网络,可以用于手写数字识别。在Python中,可以使用第三方库如TensorFlow、Keras、PyTorch等来实现BP神经网络。具体实现步骤包括:1.准备手写数字数据集;2.将数据集分为训练集和测试集;3.构建BP神经网络模型;4.训练模型;5.测试模型准确率。通过不断调整神经网络的参数和结构,可以提高手写数字识别的准确率。 ### 回答2: BP神经网络(BP neural network)是一种常用的人工神经网络算法,可以实现手写数字识别。在Python中,可以使用一些库来实现此功能,例如TensorFlow、PyTorch或Keras。 首先需要准备一个手写数字识别数据集,比如常用的MNIST数据集。该数据集包含了大量的手写数字图像和对应的标签。可以使用Python的相关库,如scikit-learn或TensorFlow提供的API,快速获取和加载这些数据。 接下来,需要搭建BP神经网络模型。可以使用上述库提供的各种API、类和函数来创建一个神经网络模型。可以选择不同的网络架构,比如使用多个隐藏层,每个隐藏层有不同的神经元数量。也可以根据实际情况设置不同的激活函数和损失函数,如ReLU、sigmoid或softmax等。 然后,使用训练集对模型进行训练。通过多次迭代,将输入的手写数字图像与其对应的输出标签进行比较,并通过反向传播算法不断调整模型的权重和偏置,以使模型的损失函数逐渐减小。 最后,使用测试集对训练好的模型进行测试和评估。将测试集中的手写数字图像输入到模型中,然后与对应的真实标签进行比较,计算模型的准确率和其他评估指标。 总结来说,使用Python中的相关库和算法,可以实现BP神经网络来进行手写数字识别。通过准备数据集、搭建模型、训练模型和评估模型的过程,可以实现高效准确地识别手写数字的功能。 ### 回答3: 实现手写数字识别的方法之一是使用BP神经网络BP神经网络是一种常见的人工神经网络,它通过反向传播算法来训练和优化网络参数。 在Python中,我们可以使用一些开源的深度学习库(如TensorFlow、Keras或PyTorch)来实现BP神经网络进行手写数字识别。 首先,需要准备一个包含大量手写数字的训练集和测试集。我们可以使用MNIST(Modified National Institute of Standards and Technology)数据集,它包含了60000个训练样本和10000个测试样本。 然后,我们可以使用Python中的深度学习库来创建和训练BP神经网络模型。下面是一个使用Keras库的示例代码: 1. 引入所需库: ```python import numpy as np from keras.models import Sequential from keras.layers import Dense from keras.datasets import mnist ``` 2. 加载和预处理数据集: ```python (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train = x_train.reshape(x_train.shape[0], 784).astype('float32') / 255 x_test = x_test.reshape(x_test.shape[0], 784).astype('float32') / 255 y_train = np_utils.to_categorical(y_train) y_test = np_utils.to_categorical(y_test) ``` 3. 构建神经网络模型: ```python model = Sequential() model.add(Dense(units=512, input_dim=784, activation='relu')) model.add(Dense(units=512, activation='relu')) model.add(Dense(units=10, activation='softmax')) ``` 4. 编译和训练模型: ```python model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) model.fit(x_train, y_train, validation_data=(x_test, y_test), epochs=10, batch_size=128) ``` 5. 对新样本进行预测: ```python predictions = model.predict(x_test) ``` 以上是BP神经网络实现手写数字识别的Python代码示例。在实际操作中,还可以进行模型调参、数据增强和模型评估等进一步优化措施。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值