【机器学习】2:DBSCAN聚类算法原理

前言:无监督学习想快一点复习完,就转入有监督学习

-----------------------------------------------------------------------------------------------------------------------------------------
-----------------------------------------------------------------------------------------------------------------------------------------
聚类算法主要包括哪些算法?

主要包括:K-means、DBSCAN、Density Peaks聚类(局部密度聚类)、层次聚类、谱聚类。

若按照聚类的方式可划分成三类:第一类是类似于K-means、DBSCAN、Density Peaks聚类(局部密度聚类)的依据密度的聚类方式;
第二种是类似于层次聚类的依据树状结构的聚类方式;
第三种是类似于谱聚类的依据图谱结构的聚类方式。
-----------------------------------------------------------------------------------------------------------------------------------------

什么是无监督学习?

  • 无监督学习也是相对于有监督学习来说的,因为现实中遇到的大部分数据都是未标记的样本,要想通过有监督的学习就需要事先人为标注好样本标签,这个成本消耗、过程用时都很巨大,所以无监督学习就是使用无标签的样本找寻数据规律的一种方法
  • 聚类算法就归属于机器学习领域下的无监督学习方法。

-----------------------------------------------------------------------------------------------------------------------------------------

无监督学习的目的是什么呢?

  • 可以从庞大的样本集合中选出一些具有代表性的样本子集加以标注,再用于有监督学习
  • 可以从无类别信息情况下,寻找表达样本集具有的特征

-----------------------------------------------------------------------------------------------------------------------------------------

分类和聚类的区别是什么呢?

  • 对于分类来说,在给定一个数据集,我们是事先已知这个数据集是有多少个种类的。比如一个班级要进行性别分类,我们就下意识清楚分为“男生”、“女生”两个类;该班又转入一个同学A,“男ta”就被分入“男生”类;
  • 而对于聚类来说,给定一个数据集,我们初始并不知道这个数据集包含多少类,我们需要做的就是将该数据集依照某个“指标”,将相似指标的数据归纳在一起,形成不同的类;
  • 分类是一个后续的过程,已知标签数据,再将测试样本分入同标签数据集中;聚类是不知道标签,将“相似指标”的数据强行“撸”在一起,形成各个类。

-----------------------------------------------------------------------------------------------------------------------------------------

一、DBSCAN聚类

定义:DBSCAN(Density-Based Spatial Clustering of Applications with Noise,具有噪声的基于密度的聚类方法)是一种基于密度的空间聚类算法。该算法将具有足够密度的区域划分为簇,并在具有噪声的空间数据库中发现任意形状的簇,DBSCAN算法将“簇”定义为密度相连的点的最大集合
1、传统的密度定义:基于中心的方法

传统的密度定义方法——事先给定半径r,数据集中点a的密度,要通过落入以点a为中心以r为半径的圆内点的计数(包括点a本身)来估计。很显然,密度是依赖于半径的。如下图所示:
这里写图片描述
2、DBSCAN中依照密度,对样本点的划分

基于以上密度的定义,我们可以将样本集中的点划分为以下三类:

  • 核心点:在半径r区域内,含有超过MinPts数目(最小数目)的点,称为核心点;
  • 边界点:在半径r区域内,点的数量小于MinPts数目,但是是核心点的直接邻居;
  • 噪声点:既不是核心点也不是边界点的点

下图可以很清楚的区分三种点:
这里写图片描述
依照上图以及三种点的定义,可以得到:噪声点是不会被聚类纳入的点,边界点与核心点组成聚类的“簇”。
3、介绍三个有趣的概念

  • 直接密度可达:在给定一个对象集合D,如果p在q的r领域内,且q是一个核心点对象,则称对象p从对象q出发时是直接密度可达的
  • 密度可达:在给定对象集合D中,如果存在一个对象链q–>e–>a–>k–>l–>p,任意相邻两个对象间都是直接密度可达的,则称对象p是对象q关于r邻域内、MinPts数目下,是密度可达的;
  • 密度相连:如果在对象集合D中存在一个对象O,使得对象p和q都是从O关于r邻域内、MinPts数目下,是密度相连的。

如下图所示:r用一个相应的半径表示,设MinPts=3,分析Q、M、P、S、O、R这5个样本点之间的关系。
这里写图片描述
根据以上概念可知:由于有标记的各点M、P、O和R的r邻域均包含3个以上的点,因此它们都是核对象;M是从P的“直接密度可达”;Q是从M的“直接密度可达”;基于上述结果,Q是从P的“密度可达”;但P从Q是无法“密度可达”(非对称的);类似的,S和R都是从O的“密度可达”;O、R都是从S的“密度相连”。

也就是说:核心点能够连通(密度可达),它们构成的以r为半径的圆形邻域相互连接或重叠,这些连通的核心点及其所处的邻域内的全部点构成一个簇。

4、DBSCAN聚类算法原理

  1. DBSCAN通过检查数据集中每个点的r邻域来搜索簇,如果点p的r邻域包含多于MinPts个点,则创建一个以p为核心对象的簇;
  2. 然后, DBSCAN迭代的聚集从这些核心对象直接密度可达的对象,这个过程可能涉及一些密度可达簇的合并;
  3. 当没有新的带你添加到任何簇时,迭代过程结束。

DBSCAN聚类算法效果展示如下图:
这里写图片描述

5、DBSCAN聚类算法优缺点

优点:基于密度定义,可以对抗噪声,能处理任意形状和大小的簇

缺点:当簇的密度变化太大时候,聚类得到的结果会不理想;对于高维问题,密度定义也是一个比较麻烦的问题。

6、DBSCAN聚类算法

# -*- coding:utf-8 -*-
# -*- author:zzZ_CMing
# -*- 2018/04/10;15:38
# -*- python3.5

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
import matplotlib.colors

# 创建Figure
fig = plt.figure()
# 用来正常显示中文标签
matplotlib.rcParams['font.sans-serif'] = [u'SimHei']
# 用来正常显示负号
matplotlib.rcParams['axes.unicode_minus'] = False

X1, y1 = datasets.make_circles(n_samples=5000, factor=.6,
                                      noise=.05)
X2, y2 = datasets.make_blobs(n_samples=1000, n_features=2,
                             centers=[[1.2,1.2]], cluster_std=[[.1]],random_state=9)

# 原始点的分布
ax1 = fig.add_subplot(311)
X = np.concatenate((X1, X2))
plt.scatter(X[:, 0], X[:, 1], marker='o')
plt.title(u'原始数据分布')
plt.sca(ax1)

"""
# K-means聚类
from sklearn.cluster import KMeans
ax2 = fig.add_subplot(312)
y_pred = KMeans(n_clusters=3, random_state=9).fit_predict(X)
plt.scatter(X[:, 0], X[:, 1], c=y_pred)
plt.title(u'K-means聚类')
plt.sca(ax2)
"""

# DBSCAN聚类
from sklearn.cluster import DBSCAN
ax3 = fig.add_subplot(313)
y_pred = DBSCAN(eps = 0.1, min_samples = 10).fit_predict(X)
plt.scatter(X[:, 0], X[:, 1], c=y_pred)
plt.title(u'DBSCAN聚类')
plt.sca(ax3)

plt.show()

效果展示:
这里写图片描述
-----------------------------------------------------------------------------------------------------------------------------------------
-----------------------------------------------------------------------------------------------------------------------------------------

系列推荐:

【监督学习】1:KNN算法实现手写数字识别的三种方法
-----------------------------------------------------------------------------------------------------------------------------------------
【无监督学习】1:K-means算法原理介绍,以及代码实现
【无监督学习】2:DBSCAN算法原理介绍,以及代码实现
【无监督学习】3:Density Peaks聚类算法(局部密度聚类)
-----------------------------------------------------------------------------------------------------------------------------------------
【深度学习】1:感知器原理,以及多层感知器解决异或问题
【深度学习】2:BP神经网络的原理,以及异或问题的解决
【深度学习】3:BP神经网络识别MNIST数据集
【深度学习】4:BP神经网络+sklearn实现数字识别
【深度学习】5:CNN卷积神经网络原理、MNIST数据集识别
【深度学习】8:CNN卷积神经网络识别sklearn数据集(附源码)
【深度学习】6:RNN递归神经网络原理、MNIST数据集识别
【深度学习】7:Hopfield神经网络(DHNN)原理介绍
-----------------------------------------------------------------------------------------------------------------------------------------
TensorFlow框架简单介绍
-----------------------------------------------------------------------------------------------------------------------------------------

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值