移动平均法 指数平滑法

本文介绍了两种常用的成本预测方法:移动平均法和指数平滑法。移动平均法包括简单移动预测模型和加权移动预测模型,并详细解释了如何通过设置不同权数来进行预测。指数平滑法则通过调整平滑系数α来减小预测误差,文中还提供了确定最佳α值的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

利用移动平均法预测成本模型为:


假设时间数列有t个时期的数值,本期为t期,要预测的下一个时期为t+1期,t期的实际数为Xt,下一期预测 t+1,并设 是时期权数,且Wt>Wt-1>Wt-2>···>Wt-n+1,则有:

简单移动预测模型:

                       wpe9.jpg (2750 bytes)

加权移动预测模型:

                       wpe8.jpg (3835 bytes)

 

 

 

利用指数平滑法预测成本模型为:

                       wpe7.jpg (2932 bytes)


式中, t+1表示下一期预测值,Xt,和 t分别表示t期的实际值和预测值,α表示平滑系数,0<α<1。α值的确定,一般是根据预测者的实践经验和主观判断力决定的。为了减少误差,可通过α值的调整来使预测值适应实际值的变化,首先需要计算出不同的α取值时的预测值与实际值的平均绝对差,然后比较其大小,取其中最小α值为最适值。其平均绝对差的计算公式是:
                     
                       wpe6.jpg (1848 bytes)


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值