最短路径算法
Dijkstra算法
代码示例一
1、矩阵a是存放各边权的邻接矩阵。
2、行向量 pb 、index1、index2 ,d 分别用来存放 P 标号信息、标号顶点顺序、标号顶点索引、最短通路的值。
index2 (i) 存放始点到第 i 点最短通路中第 i 顶点前一顶点的序号;
d(i) 存放由始点到第 i 点最短通路的值。
clc,clear
a=zeros(6);
a(1,2)=50;a(1,4)=40;a(1,5)=25;a(1,6)=10;
a(2,3)=15;a(2,4)=20;a(2,6)=25;
a(3,4)=10;a(3,5)=20;
a(4,5)=10;a(4,6)=25;
a(5,6)=55;
a=a+a';
a(find(a==0))=inf
%初始化
pb(1:length(a))=0;pb(1)=1;index1=1;index2=ones(1,length(a));
d(1:length(a))=inf;d(1)=0;temp=1;
while sum(pb)<length(a)
tb=find(pb==0);
d(tb)=min(d(tb),d(temp)+a(temp,tb));
tmpb=find(d(tb)==min(d(tb)));
temp=tb(tmpb(1));
pb(temp)=1;
index1=[index1,temp];
temp2=find(d(index1)==d(temp)-a(temp,index1));
index2(temp)=index1(temp2(1));
end
d, index1, index2
代码示例二
我们编写的从起点sb到终点db通用的Dijkstra标号算法程序如下:
1、 输入:a—邻接矩阵(aij)是指i到j之间的距离,可以是有向的
2、sb—起点的标号, db—终点的标号
3、 输出:mydistance—最短路的距离, mypath—最短路的路径
function [mydistance,mypath]=mydijkstra(a,sb,db);
n=size(a,1); visited(1:n) = 0;
distance(1:n) = inf; % 保存起点到各顶点的最短距离
distance(sb) = 0; parent(1:n) = 0;
for i = 1: n-1
temp=distance;
id1=find(visited==1); %查找已经标号的点
temp(id1)=inf; %已标号点的距离换成无穷
[t, u] = min(temp); %找标号值最小的顶点
visited(u) = 1; %标记已经标号的顶点
id2=find(visited==0); %查找未标号的顶点
for v = id2
if a(u, v) + distance(u) < distance(v)
distance(v) = distance(u) + a(u, v); %修改标号值
parent(v) = u;
end
end
end
mypath = [];
if parent(db) ~= 0 %如果存在路!
t = db; mypath = [db];
while t ~= sb
p = parent(t);
mypath = [p mypath];
t = p;
end
end
mydistance = distance(db);
return
Floyd算法
代码示例一
1、a邻接矩阵,a(i,j)表示i到j的距离,i与j若不相邻则a(i,j)=无穷大
2、path矩阵表示v到u的最短路径所经过的中间点,初始值为j
clear;clc;
n=6; a=zeros(n);
a(1,2)=50;a(1,4)=40;a(1,5)=25;a(1,6)=10;
a(2,3)=15;a(2,4)=20;a(2,6)=25; a(3,4)=10;a(3,5)=20;
a(4,5)=10;a(4,6)=25; a(5,6)=55;
a=a+a';
M=max(max(a))*n^2; %M为充分大的正实数
a=a+((a==0)-eye(n))*M; %将除对角线外的零元素变为M
path=zeros(n);
for k=1:n
for i=1:n
for j=1:n
if a(i,j)>a(i,k)+a(k,j)
a(i,j)=a(i,k)+a(k,j);
path(i,j)=k;
end
end
end
end
a, path
代码示例二:
我们编写的求起点 sb 到终点 db 通用的 Floyd 算法程序如下:
1、输入:a—邻接矩阵(aij)是指 i 到 j 之间的距离,可以是有向的
2、 sb—起点的标号;db—终点的标号
3、输出:dist—最短路的距离;% mypath—最短路的路径
function [dist,mypath]=myfloyd(a,sb,db);
n=size(a,1); path=zeros(n);
for i=1:n
for j=1:n
if a(i,j)~=inf
path(i,j)=j; %j 是 i 的后续点
end
end
end
for k=1:n
for i=1:n
for j=1:n
if a(i,j)>a(i,k)+a(k,j)
a(i,j)=a(i,k)+a(k,j);
path(i,j)=path(i,k);
end
end
end
end
dist=a(sb,db);
mypath=sb; t=sb;
%将i到j的最短路径中所经过的点添加到mypath向量中
while t~=db
temp=path(t,db);
mypath=[mypath,temp];
t=temp;
end
return
end
构造最小生成树
prim算法
核心思想:
1、集合P中存放最小生成树中的顶点,集合Q中存放最小生成树中的边。
初始化P={p}(从p出发),Q为空集。
2、从图中取出最小权值的边pv,将v存入P,pv存入Q,如此不断重复直到P=V,最小生成树构造完毕。
代码示例
clc;clear;
a=zeros(7);
a(1,2)=50; a(1,3)=60;
a(2,4)=65; a(2,5)=40;
a(3,4)=52;a(3,7)=45;
a(4,5)=50; a(4,6)=30;a(4,7)=42;
a(5,6)=70;
a=a+a';a(find(a==0))=inf;
result=[];p=1;tb=2:length(a);
%矩阵result第一、二、三行分别表示生成树边的起点、终点、权集合
while length(result)~=length(a)-1
temp=a(p,tb);temp=temp(:);
d=min(temp);
[jb,kb]=find(a(p,tb)==d);
j=p(jb(1));k=tb(kb(1));
result=[result,[j;k;d]];p=[p,k];tb(find(tb==k))=[];
end
result
Kruskal 算法
代码示例
clc;clear;
a(1,2)=50; a(1,3)=60; a(2,4)=65; a(2,5)=40;
a(3,4)=52;a(3,7)=45; a(4,5)=50; a(4,6)=30;
a(4,7)=42; a(5,6)=70;
[i,j,b]=find(a);
data=[i';j';b'];index=data(1:2,:);
loop=max(size(a))-1;
result=[];
while length(result)<loop
temp=min(data(3,:));
flag=find(data(3,:)==temp);
flag=flag(1);
v1=index(1,flag);v2=index(2,flag);
if v1~=v2
result=[result,data(:,flag)];
end
index(find(index==v2))=v1;
data(:,flag)=[];
index(:,flag)=[];
end
result