最短路径算法

最短路径问题就是寻找从某个节点出发到其它所有节点的最短路径。最近突然又想到这个问题,就写写Dijkstra与Floyd算法的代码,这两种算法都是贪心算法。相比较于有向图,无向图的邻接矩阵是对称的,二者解法相同,为了便于描述,下面全部使用有向图。当存在负边时,Dijkstra失效。

贪心算法:
贪心算法(又称贪婪算法)是指,在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,他所做出的是在某种意义上的局部最优解。
贪心算法不是对所有问题都能得到整体最优解,关键是贪心策略的选择,选择的贪心策略必须具备无后效性,即某个状态以前的过程不会影响以后的状态,只与当前状态有关。

Dijkstra:对于无负边的图,每一步都选择离目标节点的最短路径,便可以实现最短路径的全局最优解。
为了弄清楚这个算法要回答两个问题:

  • 为什么每次取最短的路径能够实现全局最优?贪心为什么有效?
  • 如何实现每次都取最短路径?

第一个问题:
假设当前已选节点构成集合V1,下一步再次选择了最短的路径Li,Li对应节点vi,v0间距离,vi属于V-V1。那么Li也一定是vi,v0间最短路径。假设Li不是v0,vi间最短路径,那么意味着v0, vi间最短路径小于Li,那这个最短路径应该在之前就被收录到最短的路径集合中,那么vi也应该早就被收录到已选节点集合中。因为每次都是搜索最短的路径,短路径肯定是在之前就被选择掉了。而当前选择了vi,矛盾,说明这个Li就是v0,vi最短路径。这样,我们每一步都选择最短路径Li,这个路径也是v0,vi之间最短距离,搜索完毕所有最短路径,便得到全局最优解。

第二个问题:
当前最短路径选择方法,在V2=V-V1的节点中,选择与v0距离最短的路径作为当前最短路径,并将对应节点加入已选节点集合。也就是我们认为最短路径一定是出现在当前已知边中(除去已经收录的节点对应最短路径,因为这些已经确定下来,不需要再次考虑),而不可能出现在目前“未知”的边上。为什么呢?因为我们已经基于当前“已知”的边得到了部分路径,那么这些“未知”节点的最短路径一定需要通过当前已知的这些节点连接上去,那么路径肯定是要长一些的,所以得到当前最短路径只需要基于当前已知的边即可。但是这里有个问题,“这些“未知”节点的最短路径一定需要通过当前已知的这些节点连接上去,那么路径肯定是要长一些的”,这个成立的前提是这些未知的边需要非负,如果有负边存在那么这句话也就不成立。这就是Dijkstra不能解决有负边的最短路径问题。

分析完了这两个问题再来详细说下如何选择最短路径:
示例
第一步,初始化v0到每个节点距离∞,选择v0放入已选节点集合,并将边v0-v2,v0-v4,v0-v5放入已知边中(更新v0到这些节点的距离);
第二步,在当前已知边中选最短路径v0-v2=10,并更新v0-v2最短路径为10,将v2放入已选节点集合,并将v2-v3放入已知边中(更新v0到v3距离为60);
第三步,在当前已知边中(v0-v3=60,v0-v4=30,v0-v5=100)选择最短路径v0-v4=30,将v4放入已选节点集合中,并将v4-v3,v4-v5放入已知边中(更新v0-v3=50,v0-v5=90);
以此类推,可以看出Dijkstra算法就是选最短路径,加节点,加边并更新距离,直到所有的节点都选完。
代码如下:

MAXVAL=float('inf')
#由于边的数量比较少,直接使用邻接表来存储每个节点的出度
w=[[(2,10),(4,30),(5,100)],[(2,5)],[(3,50)],
  [(5,10)],[(3,20),(5,60
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值