基于模糊RBF神经网络轨迹跟踪研究(Matlab代码实现)

 👨‍🎓个人主页:研学社的博客    

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

模糊控制(Fuzzy Control)是 1965 年,由美国的 Zadeh 率先创立了模糊集合论,后来又提出了模糊逻辑控制器的概念和有关定理。于 1974 年第一次组成了模糊逻辑控制器,并使用于锅炉和汽轮机的控制系统中。模糊控制是以模糊集合论、模糊语言变量和模糊逻辑推理为基础的现代智能控制技术。模糊控制是根据经验建立模糊规则,再把传感器接收的实时信息加以模糊化,进而将模糊化后的信息加以模糊推理,将模糊推理后的信息清晰化后加到执行器上,此过程就完成了模糊控制的流程。模糊控制的基本原理图如图 所示:  

模糊 RBF 神经网络,是模糊控制系统和 RBF 神经网络的结合。由于模糊系统的设计存在主观性,模糊控制的设计都是基于对专业人员实际经验的认识基础上的,所以把神经网络的能力融入到模糊系统中,使用分布式计算的神经网络表达,达到了模糊控制系统的自组织、自学习的效果。在模糊 RBF 神经网络中,神经网路的输入、输出层节点用于表达模糊系统的输入、输出信息,而神经网络的隐含层节点则用于表达隶属度函数和模糊规律。

 

📚2 运行结果

 

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]吴秋霞. 基于模糊神经网络的移动机器人轨迹跟踪控制的研究[D].厦门大学,2017.

[2]高健. 基于模糊RBF神经网络的花椒采摘机器人控制系统的设计与实现[D].兰州理工大学,2022.DOI:10.27206/d.cnki.ggsgu.2022.001293.

🌈4 Matlab代码实现

  • 5
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值