💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
多目标免疫遗传算法在海上救援选址中的应用研究
摘要:本研究聚焦于海上救援选址这一实际问题,提出运用多目标免疫遗传算法来进行较简化情况下的选址计算。海上救援选址需综合考虑多方面因素,属于复杂的多目标优化问题。多目标免疫遗传算法结合了免疫系统原理与遗传算法技术,能够有效应对此类问题。通过在MATLAB环境下实现该算法,为海上救援选址提供了优化方案,有助于提高救援效率和降低成本。
一、引言
海上救援工作对于保障海上人员生命安全和财产至关重要。然而,在广阔的海域中确定合适的救援站点位置是一个极具挑战性的问题。合理的救援选址需要在多个目标之间进行平衡,如最小化救援时间、降低成本以及最大化覆盖范围等。传统方法在处理此类多目标、复杂的选址问题时存在一定局限性,因此,需要一种有效的优化算法来解决海上救援选址问题。多目标免疫遗传算法作为一种融合了生物免疫系统和遗传算法优势的算法,为解决该问题提供了新的思路。
二、海上救援选址问题分析
(一)问题描述
海上救援选址问题旨在从广阔的海域中挑选出最佳的救援站点位置,以便在紧急情况发生时能够迅速响应并提供救援服务。由于海上事故发生地点具有不确定性,且救援资源有限,因此需要综合考虑多种因素来确定最优的选址方案。
(二)影响因素
- 救援时间:救援站点到事故发生地的距离直接影响救援响应时间,应尽量选择距离可能事故区域较近的位置作为救援站点,以缩短救援到达时间 。
- 成本:包括建设救援站点的成本、日常运营成本以及物资调配成本等。在满足救援需求的前提下,需要控制成本,避免资源浪费 。
- 覆盖范围:救援站点应能够覆盖尽可能大的海域范围,以提高救援的有效性。这意味着需要考虑站点的布局和地理位置,确保能够及时响应不同区域的事故 。
- 可达性:救援站点的位置应便于救援船只、飞机等交通工具到达,同时要考虑海洋环境、气象条件等因素对可达性的影响 。
(三)多目标特性
海上救援选址问题是典型的多目标优化问题,上述各个目标之间往往存在冲突。例如,为了缩短救援时间可能需要在靠近事故高发区建设救援站点,但这可能会增加建设成本;而追求更大的覆盖范围可能会导致救援时间延长或成本上升。因此,无法同时实现所有目标的最优,需要找到一个在多个目标之间取得平衡的解决方案。
三、多目标免疫遗传算法原理
(一)遗传算法基础
遗传算法(Genetic Algorithm,GA)是一种基于自然选择和遗传变异的启发式搜索算法 。它通过对一组个体(种群)进行迭代操作,模拟生物进化过程,逐步找到问题的最优解。遗传算法主要操作包括选择、交叉和变异 :
- 选择:根据个体的适应度值(目标函数值),选择优良个体,使其有更多机会参与下一代的繁殖。
- 交叉:优良个体之间交换部分染色体,产生新的个体,从而增加种群的多样性。
- 变异:对个体的染色体进行随机变异,以防止算法陷入局部最优解。
(二)免疫遗传算法
免疫遗传算法(Immune Genetic Algorithm,IGA)是遗传算法的变体,它将生物免疫系统的原理引入遗传算法中 。生物免疫系统具有识别、记忆和自我调节等功能,IGA通过模仿这些功能来增强算法的性能:
- 免疫识别:识别解空间中的优良个体和不良个体,类似于免疫系统识别抗原和抗体。
- 免疫记忆:记住历史上出现过的优良个体,避免算法在进化过程中丢失这些信息,有助于避免过早收敛到局部最优解。
- 免疫调节:根据种群的多样性和进化情况,调整算法的参数和操作,以维持种群的多样性和进化方向。
(三)多目标免疫遗传算法
多目标免疫遗传算法(Multi - Objective Immune Genetic Algorithm,MOIGA)用于解决多目标优化问题 。在多目标优化中,由于存在多个目标函数,且这些目标之间可能相互冲突,因此不存在唯一的最优解,而是存在一组最优解,称为帕累托最优解集(Pareto optimal set)。MOIGA通过免疫机制和遗传操作,在多个目标之间进行权衡,逐步搜索帕累托最优解集:
- 非支配排序:对种群中的个体进行非支配排序,将个体分为不同的等级,等级越高表示该个体在多个目标上的综合性能越好。
- 拥挤度计算:为了保持解集的多样性,计算每个个体的拥挤度。拥挤度较大的个体在进化过程中具有更高的生存概率,从而避免算法收敛到少数几个相似的解。
(四)NSGA - II算法
本研究中使用的多目标免疫遗传算法具体实现采用了NSGA - II(Non - dominated Sorting Genetic Algorithm II)算法 。NSGA - II是一种广泛应用的多目标优化算法,它在解决多目标问题中的非支配排序和拥挤度比较方面具有良好的性能,能够产生一组均匀分布的最优解集合。其主要步骤如下:
- 初始化种群:随机生成初始种群。
- 非支配排序:对初始种群进行非支配排序,将种群分为不同的等级。
- 计算拥挤度:计算每个个体的拥挤度。
- 选择、交叉和变异:根据非支配排序和拥挤度,选择优良个体进行交叉和变异操作,生成新的种群。
- 合并种群:将父代种群和子代种群合并。
- 重复步骤2 - 5:直到满足终止条件(如达到最大迭代次数)。
四、基于MATLAB的算法实现
(一)MATLAB简介
MATLAB是MathWorks公司推出的一套高性能数值计算和可视化软件 。它集成了数值分析、矩阵计算、信号处理和图形显示等多种功能,拥有丰富的函数库和工具箱,为算法开发和工程应用提供了便利的平台。在本研究中,利用MATLAB的编程环境和相关工具箱来实现多目标免疫遗传算法的计算过程。
(二)实现步骤
- 数据准备:收集与海上救援选址相关的数据,如海域地图、事故发生概率分布、各个位置的建设成本等,并将这些数据存储在合适的文件中,以便在算法中调用。例如,将土地成本数据存储在
land_cost.mat
文件中,将事故发生位置相关数据存储在riskPosition.mat
文件中 。 - 初始化种群:在MATLAB中编写代码,随机生成初始种群。每个个体代表一个可能的海上救援选址方案,其染色体编码表示选址的位置信息等相关参数。例如,使用
popinit.m
文件来实现种群初始化的功能 。 - 目标函数计算:根据海上救援选址问题的特点,定义目标函数,如救援时间函数、成本函数和覆盖范围函数等。在MATLAB中编写相应的函数代码,计算每个个体的目标函数值,即适应度值。例如,使用
fitness.m
文件来计算个体的适应度 。 - 非支配排序和拥挤度计算:利用MATLAB的矩阵运算和逻辑判断功能,实现NSGA - II算法中的非支配排序和拥挤度计算。编写相应的函数代码,对种群进行非支配排序,并计算每个个体的拥挤度。例如,使用
multiSorting.m
文件来实现非支配排序功能 。 - 遗传操作:在MATLAB中编写代码实现选择、交叉和变异等遗传操作。根据非支配排序和拥挤度结果,选择优良个体进行交叉和变异,生成新的种群。例如,使用
Mutation.m
文件来实现变异操作 。 - 迭代优化:通过循环结构,不断重复上述步骤,直到满足终止条件。在每次迭代过程中,记录种群的最优解和相关性能指标。
- 结果分析与可视化:对算法得到的最优解进行分析,评估其在各个目标上的性能。利用MATLAB的绘图功能,将最优解的选址位置在地图上进行可视化展示,直观地观察选址方案的合理性。
五、实验结果与分析
(一)实验设置
- 参数设置:确定多目标免疫遗传算法的参数,如种群大小、交叉概率、变异概率、最大迭代次数等。通过多次实验,调整参数以获得较好的结果。
- 对比算法:为了验证多目标免疫遗传算法在海上救援选址问题上的有效性,选择其他传统优化算法(如单纯遗传算法、模拟退火算法等)进行对比实验。
(二)实验结果
- 多目标免疫遗传算法结果:运行多目标免疫遗传算法,得到一组帕累托最优解。这些解在救援时间、成本和覆盖范围等目标之间取得了不同程度的平衡。通过分析这些最优解,可以根据实际需求选择最合适的海上救援选址方案。
- 对比算法结果:运行对比算法,记录其得到的最优解和相关性能指标。对比不同算法在相同实验条件下的结果,分析多目标免疫遗传算法的优势和不足。
(三)结果分析
- 性能评估:从救援时间、成本、覆盖范围等多个目标角度,对不同算法的结果进行评估。结果表明,多目标免疫遗传算法在多个目标之间的平衡能力优于其他对比算法,能够找到更符合实际需求的选址方案。
- 收敛性分析:观察多目标免疫遗传算法在迭代过程中的收敛情况,分析其收敛速度和稳定性。结果显示,该算法能够较快地收敛到帕累托最优解集,并且在进化过程中保持较好的稳定性。
- 多样性分析:通过计算最优解的分布情况,评估多目标免疫遗传算法得到的解集的多样性。结果表明,该算法能够有效地保持解集的多样性,提供多种不同的选址方案供决策者选择。
六、结论与展望
(一)研究结论
本研究将多目标免疫遗传算法应用于较简化的海上救援选址问题,通过在MATLAB环境下实现该算法,得到了一组在多个目标之间取得平衡的最优选址方案。实验结果表明,多目标免疫遗传算法在解决海上救援选址这类多目标优化问题上具有良好的性能,能够有效地提高救援效率、降低成本并扩大覆盖范围。与其他传统优化算法相比,该算法在收敛性、多样性和多目标平衡能力等方面具有明显优势。
(二)研究不足
- 在模型建立过程中,对一些复杂的实际因素进行了简化处理,如海洋环境的动态变化、救援资源的实时调配等。这些因素可能会对选址方案的实际效果产生影响。
- 算法的计算复杂度较高,在处理大规模问题时,计算时间可能较长。需要进一步优化算法,提高其计算效率。
(三)未来展望
- 考虑更多实际因素,如海洋气象条件、海洋生态环境等,对模型进行进一步完善,使其更贴近实际情况。
- 探索更高效的算法优化策略,如改进遗传操作、结合其他智能算法等,以降低算法的计算复杂度,提高算法的运行效率。
- 将研究成果应用于实际的海上救援系统中,通过实践检验算法的有效性和实用性,并不断进行改进和优化。
综上所述,多目标免疫遗传算法在海上救援选址问题上具有广阔的应用前景,通过不断的研究和改进,有望为海上救援工作提供更加科学、合理的选址方案,提高海上救援的能力和水平。
📚2 运行结果
部分代码:
%% 画出免疫算法收敛曲线
% 记录当代最佳个体和种群平均适应度
% 找出ranks为1的个体的索引
index1 = find(individuals.ranks == 1);
best_chrom = individuals.chrom(index1(1),:); % 找出最优个体
best_finess = individuals.fitness(index1(1),:);
average = mean(individuals.fitness); % 计算平均适应度
trace = [trace; best_finess, average]; % 记录
% 提取四个不同的目标函数值
objective1 = trace(:, [1, 4]); % 第一个目标函数
objective2 = 1./trace(:, [2, 5]); % 第二个目标函数
objective3 = trace(:, [3, 6]); % 第二个目标函数
% 创建迭代次数向量
iterations = 1:size(trace, 1);
% 第一个目标
subplot(1, 3, 1);
plot(iterations, objective1(:, 1), 'b', 'LineWidth', 0.7);
hold on;
plot(iterations, objective1(:, 2), 'r', 'LineWidth', 0.7);
xlabel('迭代次数');
ylabel('万元');
title('总成本');
% 第二个目标
subplot(1, 3, 2);
plot(iterations, objective2(:, 1), 'b', 'LineWidth', 0.7);
hold on;
plot(iterations, objective2(:, 2), 'r', 'LineWidth', 0.7);
xlabel('迭代次数');
ylabel('概率');
title('可靠性');
% 第三个目标
subplot(1, 3, 3);
plot(iterations, objective3(:, 1), 'b', 'LineWidth', 0.7);
hold on;
plot(iterations, objective3(:, 2), 'r', 'LineWidth', 0.7);
xlabel('迭代次数');
ylabel('小时');
title('救援总用时');
disp(['当前进化次数:',num2str(GEN)])
pause(0.0001);
end
combined_vector = [];
for i = 1:numel(fronts)
combined_vector = [combined_vector fronts{i}];
end
pareto_index = combined_vector(1:6);
pareto_fronts = individuals.chrom(pareto_index, :);
figure;
pareto = individuals.fitness;
scatter3(pareto(:,1), 1./pareto(:,2), pareto(:,3), 'o', 'filled');
xlabel('成本');
ylabel('可靠性');
zlabel('救援总用时');
title('帕累托前沿');
grid on;
% 加载仿真数据
islandPosition = load("islandPosition.mat").islandPosition; % 岛屿坐标
riskPosition = load("riskPosition.mat").riskPosition; % 风险点坐标
V = load("oilSpill.mat").oilSpill'; % 溢油量情况
c_l = load("constructionCost.mat").constructionCost; % 地形建设成本
figure;
num_solutions = size(pareto_fronts, 1);
for solution_idx = 1:num_solutions
% 提取当前方案
current_solution = pareto_fronts(solution_idx, :);
points = islandPosition(current_solution, :);
%找出最近集结点
num_points = nGenes;
distance_mat = zeros(size(riskPosition, 1), size(points, 1));
for i = 1:size(points, 1)
for j = 1:size(riskPosition, 1)
distance = norm(points(i, :) - riskPosition(j, :));
distance_mat(j, i) = distance;
end
end
[~,b1]=min(distance_mat');
temp_distance_mat = distance_mat;
for i = 1:size(riskPosition, 1)
temp_distance_mat(i,b1(i)) = inf;
end
[~,b2]=min(temp_distance_mat');
index1=cell(1,nGenes);
index2=cell(1,nGenes);
for i=1:nGenes
%计算各个集结点的目标
index1{i}=find(b1==i);
index2{i}=find(b2==i);
end
subplot(2, 3, solution_idx);
title(['方案 ' num2str(solution_idx)]); % 标题
cargox = islandPosition(current_solution, 1);
cargoy = islandPosition(current_solution, 2);
plot(islandPosition(:, 1), islandPosition(:, 2), 'o', 'LineWidth', 1, ...
'MarkerEdgeColor', 'y', ...
'MarkerFaceColor', 'y', ...
'MarkerSize', 5);
hold on;
plot(cargox, cargoy, 's', 'LineWidth', 1, ...
'MarkerEdgeColor', 'b', ...
'MarkerFaceColor', 'b', ...
'MarkerSize', 9);
% 绘制事故风险点
for i = 1:size(riskPosition, 1)
scatter(riskPosition(i, 1), riskPosition(i, 2), [], V(i), 'filled', 'MarkerEdgeColor', 'k');
end
% 设置图例和标签
colorbar;
colormap('jet');
for i = 1:size(riskPosition, 1)
x1 = [riskPosition(i, 1), islandPosition(current_solution(b1(i)), 1)];
y1 = [riskPosition(i, 2), islandPosition(current_solution(b1(i)), 2)];
plot(x1, y1, 'c', 'LineWidth', 1);
if plot_flag == 1
x2 = [riskPosition(i, 1), islandPosition(current_solution(b2(i)), 1)];
y2 = [riskPosition(i, 2), islandPosition(current_solution(b2(i)), 2)];
plot(x2, y2, 'g', 'LineWidth', 1);
end
text(riskPosition(i, 1), riskPosition(i, 2) + 5, num2str(i), 'HorizontalAlignment', 'center', 'VerticalAlignment', 'bottom');
hold on;
end
for i = 1:nGenes
text(islandPosition(current_solution(i), 1), islandPosition(current_solution(i), 2) - 30, num2str(i), ...
'HorizontalAlignment', 'center', 'VerticalAlignment', 'bottom', 'Color', 'r');
end
end
pareto_fitness = individuals.fitness(pareto_index, :);
disp('帕累托前沿:');
for i = 1:length(pareto_fitness)
disp(['方案',num2str(i)]);
disp(['成本:', num2str(pareto_fitness(i,1)),'万元']);
disp(['可靠性:', num2str(100/pareto_fitness(i,2)),'%']);
disp(['总救援时长:', num2str(pareto_fitness(i,3)),'小时']);
end
% 最优解
best_solution = pareto_fronts(1, :);
points = islandPosition(best_solution, :);
%找出最近集结点
num_points = nGenes;
distance_mat = zeros(size(riskPosition, 1), size(points, 1));
for i = 1:size(points, 1)
for j = 1:size(riskPosition, 1)
distance = norm(points(i, :) - riskPosition(j, :));
distance_mat(j, i) = distance;
end
end
[a1,b1]=min(distance_mat');
temp_distance_mat = distance_mat;
for i = 1:size(riskPosition, 1)
temp_distance_mat(i,b1(i)) = inf;
end
[a2,b2]=min(temp_distance_mat');
index1=cell(1,nGenes);
index2=cell(1,nGenes);
for i=1:nGenes
%计算各个集结点的目标
index1{i}=find(b1==i);
index2{i}=find(b2==i);
end
figure;
title('最优方案'); % 标题
cargox = islandPosition(best_solution, 1);
cargoy = islandPosition(best_solution, 2);
plot(islandPosition(:, 1), islandPosition(:, 2), 'o', 'LineWidth', 1, ...
'MarkerEdgeColor', 'y', ...
'MarkerFaceColor', 'y', ...
'MarkerSize', 5);
hold on;
plot(cargox, cargoy, 's', 'LineWidth', 1, ...
'MarkerEdgeColor', 'b', ...
'MarkerFaceColor', 'b', ...
'MarkerSize', 9);
% 绘制事故风险点
for i = 1:size(riskPosition, 1)
scatter(riskPosition(i, 1), riskPosition(i, 2), [], V(i), 'filled', 'MarkerEdgeColor', 'k');
end
% 设置图例和标签
colorbar;
colormap('jet');
for i = 1:size(riskPosition, 1)
x1 = [riskPosition(i, 1), islandPosition(best_solution(b1(i)), 1)];
y1 = [riskPosition(i, 2), islandPosition(best_solution(b1(i)), 2)];
plot(x1, y1, 'c', 'LineWidth', 1);
if plot_flag == 1
x2 = [riskPosition(i, 1), islandPosition(best_solution(b2(i)), 1)];
y2 = [riskPosition(i, 2), islandPosition(best_solution(b2(i)), 2)];
plot(x2, y2, 'g', 'LineWidth', 1);
end
text(riskPosition(i, 1), riskPosition(i, 2) + 5, num2str(i), 'HorizontalAlignment', 'center', 'VerticalAlignment', 'bottom');
hold on;
end
for i = 1:nGenes
text(islandPosition(best_solution(i), 1), islandPosition(best_solution(i), 2) - 50, num2str(i), ...
'HorizontalAlignment', 'center', 'VerticalAlignment', 'bottom', 'Color', 'r');
end
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)
[1]胡宇博.基于多目标免疫进化算法的动态车辆路径优化研究[D].郑州大学[2025-02-06].
[2]刘金华.多目标遗传算法在企业能源规划中的应用研究[D].广东工业大学,2013.
[3]叶碎高,温进化,王士武.多目标免疫遗传算法在梯级水库优化调度中的应用研究[J].南水北调与水利科技, 2011, 9(1):4.
🌈4 Matlab代码实现
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取