💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
二阶多智能体系统的协同控制——连续时间含时延系统一致性研究
摘要:本文深入研究二阶多智能体系统在连续时间含时延情况下的协同控制一致性问题。首先阐述了二阶多智能体系统协同控制的基本概念和研究意义,接着分析连续时间含时延对系统一致性的影响,随后探讨相关的控制策略和方法,并基于李亚普诺夫稳定性理论和代数图论进行理论证明,最后通过仿真实验验证所提方法的有效性。
一、引言
多智能体系统的协同控制在众多领域有着广泛应用,如自动驾驶、机器人协作、分布式传感器网络等。二阶多智能体系统的协同控制相较于一阶系统更为复杂,涉及到智能体的位置、速度等多方面的协同。在实际应用中,系统不可避免地会存在时延,时延的存在可能导致系统性能下降甚至不稳定,因此研究连续时间含时延系统的一致性具有重要的理论和实际意义。
二、二阶多智能体系统协同控制基础
(一)二阶多智能体系统模型
每个智能体的动态系统可以表示为: xi′′(t)=ui(t)+∑j=1naij(xj(t)−xi(t))+∑j=1nbij(xj′(t)−xi′(t))xi′′(t)=ui(t)+∑j=1naij(xj(t)−xi(t))+∑j=1nbij(xj′(t)−xi′(t)) 其中,xi(t)xi(t)表示智能体ii的位置,ui(t)ui(t)表示ii的控制输入,aijaij和bijbij是智能体之间的耦合系数。此模型描述了智能体之间通过位置和速度信息的交互来实现协同运动。
(二)一致性的定义
多智能体一致性问题是指一组智能体在执行各自任务的同时,需要通过相互协作、信息交换等方式,使得它们的状态趋于相同或者达到一致。二阶一致性问题则在一阶一致性的基础上,要求智能体之间的速度和加速度也要达到一致。
三、连续时间含时延系统分析
(一)时延对系统的影响
在连续时间系统中,时延主要体现在智能体之间的信息交互上。由于时延的存在,智能体接收到的邻居信息可能是过时的,这会导致控制决策的偏差,进而影响系统的一致性。例如,当智能体ii根据时延的邻居位置和速度信息进行控制调整时,可能无法准确跟随邻居的运动,使得整体协同效果变差。
(二)时延建模
四、控制策略与方法
(一)基于一致性误差的反馈控制器设计
(二)分布式动态事件触发条件
为了节约通信资源,设计分布式动态事件触发条件。所设计的条件无需依赖邻居间持续通信,智能体仅在满足特定事件条件时才进行信息传输。例如,当一致性误差超过某个阈值或者误差的变化率达到一定程度时,智能体触发信息更新事件,向邻居发送自身状态信息。
五、理论证明
基于李亚普诺夫稳定性理论和代数图论知识,对所设计的控制器和分布式动态事件触发条件进行严格证明。
(一)李亚普诺夫函数构造
(二)稳定性分析
对李亚普诺夫函数求导V˙(t)V˙(t),并将智能体的动态系统模型和控制器代入V˙(t)V˙(t)中。通过分析V˙(t)V˙(t)的正负性来判断系统的稳定性。如果在一定条件下V˙(t)≤0V˙(t)≤0,则说明系统是稳定的,能够达到一致性。同时,结合代数图论中关于图的连通性等知识,进一步证明在含时延的情况下系统仍然可以实现一致性。例如,利用图的拉普拉斯矩阵性质,分析智能体之间的连接关系对一致性的影响。
六、仿真实验
(一)实验设置
在Matlab环境中进行仿真实验。定义多个智能体的运动模型和控制器,使用ODE(常微分方程)求解器来表示智能体的运动模型,并采用基于邻居信息的反馈控制策略。构建多个智能体之间的通信网络,使用各种网络模型和图形工具来建立智能体之间的通信网络,并实现信息共享和传输。设置仿真参数,如智能体数量、初始位置和速度、时延大小、控制器增益等,并设定不同的初始条件以测试系统在不同情况下的性能。
(二)实验结果分析
运行仿真后,使用各种图表和分析工具来展示数据和分析仿真结果。通过绘制智能体的位置、速度随时间的变化曲线,观察智能体是否逐渐达到一致状态。分析不同时延情况下系统达到一致性的时间和稳定性,验证所设计的控制策略和分布式动态事件触发条件的有效性。例如,对比在不同增益参数下系统的收敛速度,以及在有无事件触发条件下通信资源的消耗情况。
七、结论
本文针对二阶多智能体系统在连续时间含时延情况下的协同控制一致性问题进行了深入研究。提出了基于一致性误差的反馈控制器和分布式动态事件触发条件,通过理论证明和仿真实验验证了方法的有效性。研究结果表明,所设计的控制策略能够在含时延的情况下实现二阶多智能体系统的一致性协同控制,同时分布式动态事件触发条件可以有效节约通信资源。未来的研究可以进一步考虑更复杂的时延情况,如时变时延、随机时延等,以及将研究成果应用于更多实际场景中。
📚2 运行结果
部分代码:
% Iteration Calculate
for k=round(tau_star/dT)+1:times
% record time
t(:,k+1) = t(:,k) + dT;
% calculate control inputs
u(:,k) = [-alpha*L -beta*L] * [p(:,k-round((tau_star)/dT)); v(:,k-round((tau_star)/dT))];
% update statues
v(:,k+1) = v(:,k) + dT * u(:,k);
p(:,k+1) = p(:,k) + dT * v(:,k);
end
%% Draw graphs
figure(1)
plot(t,p(1,:), t,p(2,:), t,p(3,:), t,p(4,:), 'linewidth',1.5);
xlabel('t (s)','Interpreter','latex');
ylabel('p_i','Interpreter','latex');
legend('p_1','p_2','p_3','p_4','Interpreter','latex'); grid on
xlim([0,20])
figure(2)
plot(t,v(1,:), t,v(2,:), t,v(3,:), t,v(4,:), 'linewidth',1.5);
xlabel('t (s)','Interpreter','latex');
ylabel('v_i','Interpreter','latex');
legend('v_1','v_2','v_3','v_4'); grid on
xlim([0,20])
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)
[1]高伟.具有时延的多智能体系统协同控制的研究[D].内蒙古科技大学,2023.
[2]齐斌.多智能体系统的协同控制一致性问题研究[D].江南大学,2015.
[3]控制科学与工程.二阶多智能体系统的协同包含控制研究[D].[2025-02-07].
[4]秦家虎.一类二阶多智能体系统一致性问题研究[D].哈尔滨工业大学,2012.
🌈4 Matlab代码实现
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取