無窮小的性質和極限運算法則的證明

極限運算法則即函數的和、差、積、商、複合求極限的法則。即
x → x 0 x\rightarrow x_0 xx0為例,數學表達為:如果 lim ⁡ x → x 0 f ( x ) = A \lim \limits_{x\rightarrow x_0}f(x)=A xx0limf(x)=A lim ⁡ x → x 0 g ( x ) = B \lim \limits_{x\rightarrow x_0}g(x)=B xx0limg(x)=B
1) lim ⁡ x → x 0 [ f ( x ) ± g ( x ) ] = lim ⁡ x → x 0 f ( x ) ± lim ⁡ x → x 0 g ( x ) = A ± B \lim \limits_{x\rightarrow x_0}\left[f(x)\pm g(x)\right]=\lim \limits_{x\rightarrow x_0}f(x)\pm \lim \limits_{x\rightarrow x_0}g(x)=A\pm B xx0lim[f(x)±g(x)]=xx0limf(x)±xx0limg(x)=A±B
2) lim ⁡ x → x 0 [ f ( x ) ⋅ g ( x ) ] = lim ⁡ x → x 0 f ( x ) ⋅ lim ⁡ x → x 0 g ( x ) = A ⋅ B \lim \limits_{x\rightarrow x_0}\left[f(x)\cdot g(x)\right]=\lim \limits_{x\rightarrow x_0}f(x)\cdot \lim \limits_{x\rightarrow x_0}g(x)=A\cdot B xx0lim[f(x)g(x)]=xx0limf(x)xx0limg(x)=AB
3)若 B ≠ 0 B\ne 0 B=0 , lim ⁡ x → x 0 f ( x ) g ( x ) = lim ⁡ x → x 0 f ( x ) lim ⁡ x → x 0 g ( x ) = A B \lim \limits_{x\rightarrow x_0}\frac{f(x)}{g(x)}=\frac{\lim \limits_{x\rightarrow x_0}f(x)}{\lim \limits_{x\rightarrow x_0}g(x)}= \frac{A}{B} xx0limg(x)f(x)=xx0limg(x)xx0limf(x)=BA
4)函數 y = f [ g ( x ) ] y=f[g(x)] y=f[g(x)]是由函數 u = g ( x ) u=g(x) u=g(x)與函數 y = f ( u ) y=f(u) y=f(u)複合而成,若 lim ⁡ x → x 0 g ( x ) = u 0 \lim \limits_{x\rightarrow x_0}g(x)=u_0 xx0limg(x)=u0 lim ⁡ u → u 0 f ( x ) = A \lim \limits_{u\rightarrow u_0}f(x)=A uu0limf(x)=A,則 lim ⁡ x → x 0 f [ g ( x ) ] = lim ⁡ u → u 0 f ( u ) = A \lim\limits_{x\rightarrow x_0}f[g(x)]=\lim\limits_{u\rightarrow u_0}f(u)=A xx0limf[g(x)]=uu0limf(u)=A

以上是函數極限運算法則,本文我們也證明數列的極限運算法則,以函數為主線,對應地寫數列的情況。

為了證明函數極限運算法則,我們需要使用『函數=極限值+無窮小』的公式,和無窮小的性質。

定理1 兩個無窮小的和是無窮小
證:設 α \alpha α β \beta β是兩個無窮小, ∀ ε > 0 \forall \varepsilon>0 ε>0 ∃ δ 1 > 0 \exists \delta_1>0 δ1>0 0 < ∣ x − x 0 ∣ < δ 1 0<|x-x_0|<\delta_1 0<xx0<δ1 ∣ α ∣ < ε / 2 |\alpha|<\varepsilon/2 α<ε/2 ∃ δ 2 > 0 \exists \delta_2>0 δ2>0 0 < ∣ x − x 0 ∣ < δ 2 0<|x-x_0|<\delta_2 0<xx0<δ2 ∣ β ∣ < ε / 2 |\beta|<\varepsilon/2 β<ε/2。令 δ = m i n { δ 1 , δ 2 } \delta=min\{\delta_1,\delta_2\} δ=min{δ1,δ2} ∣ α + β ∣ ⩽ ∣ α ∣ + ∣ β ∣ < ε |\alpha+\beta|\leqslant|\alpha|+|\beta|<\varepsilon α+βα+β<ε。故, α + β \alpha+\beta α+β是無窮小。

推論:有限個無窮小之和是無窮小

我們來證明:兩個無窮小數列之和是無窮小數列。
證:設數列 { x n } \{x_n\} {xn} { y n } \{y_n\} {yn}是兩個無窮小, ∀ ε > 0 \forall \varepsilon>0 ε>0 ∃ N 1 \exists N_1 N1,使得 n > N 1 n>N_1 n>N1 ∣ x n ∣ < ε / 2 |x_n|<\varepsilon/2 xn<ε/2 ∃ N 2 \exists N_2 N2,使得 n > N 2 n>N_2 n>N2 ∣ y n ∣ < ε / 2 |y_n|<\varepsilon/2 yn<ε/2。令 N = m a x { N 1 , N 2 } N=max\{N_1,N_2\} N=max{N1,N2},則 n > N n>N n>N時, ∣ x n + y n ∣ < ∣ x n ∣ + ∣ y n ∣ < ε |x_n+y_n|<|x_n|+|y_n|<\varepsilon xn+yn<xn+yn<ε。所以,數列 { x n + y n } \{x_n+y_n\} {xn+yn}也是無窮小。

定理:有界函數與無窮小的乘積是無窮小
證:設函數 u u u x 0 x_0 x0的某個去心鄰域 U ˚ ( x 0 , δ 1 ) \mathring U(x_0,\delta_1) U˚(x0,δ1)是有界的,即 ∃ M > 0 \exists M>0 M>0 ∣ u ∣ ⩽ M |u|\leqslant M uM,對一切 x ∈ U ˚ ( x 0 , δ 1 ) x\in \mathring U(x_0,\delta_1) xU˚(x0,δ1)成立。
又設 α \alpha α是無窮小,即 ∀ ε > 0 \forall \varepsilon>0 ε>0 ∃ x 0 \exists x_0 x0的某個去心鄰域 U ˚ ( x 0 , δ 2 ) \mathring U(x_0,\delta_2) U˚(x0,δ2),使得 ∣ α ∣ < ε M |\alpha|<\frac{\varepsilon}{M} α<Mε
δ = m i n { δ 1 , δ 2 } \delta=min\{\delta_1,\delta_2\} δ=min{δ1,δ2},則一切 x ∈ U ( x 0 , δ ) x \in U(x_0,\delta) xU(x0,δ) ∣ u α ∣ = ∣ u ∣ ∣ α ∣ < M × ε M = ε |u\alpha|=|u||\alpha|<M\times\frac{\varepsilon}{M}=\varepsilon =u∣∣α<M×Mε=ε。故, x → x 0 x\rightarrow x_0 xx0 u α u\alpha 是無窮小。
x → ∞ x\rightarrow \infty x證明類似。)

我們來證明:有界數列與無窮小數列的乘積是無窮小數列。
證:設數列 { x n } \{x_n\} {xn}有界,則 ∃ M \exists M M,一切 x n x_n xn ∣ x n ∣ ⩽ M |x_n|\leqslant M xnM。數列 { y n } \{y_n\} {yn}是無窮小, ∀ ε > 0 \forall \varepsilon>0 ε>0 ∃ N > 0 \exists N>0 N>0 n > N n>N n>N ∣ y n ∣ < ε / M |y_n|<\varepsilon/M yn<ε/M ∣ x n ⋅ y n ∣ ⩽ ∣ x n ∣ ∣ y n ∣ < M ⋅ ε M = ε |x_n\cdot y_n|\leqslant |x_n||y_n|<M\cdot \frac{\varepsilon}{M}=\varepsilon xnynxn∣∣yn<MMε=ε,所以數列 { x n ⋅ y n } \{x_n\cdot y_n\} {xnyn}是無窮小數列。

推論1:常數與無窮小的乘積是無窮小。特別地, α \alpha α為無窮小, − α -\alpha α也為無窮小。

推論2:有限個無窮小的乘積是無窮小
提示:無窮小必有界。設 β \beta β是無窮小。令 ε = 1 \varepsilon=1 ε=1 ∃ x 0 \exists x_0 x0的某個去心鄰域 U ˚ ( x 0 , δ ) \mathring U(x_0,\delta) U˚(x0,δ) ∣ β ∣ < 1 |\beta|<1 β<1,即 x ∈ U ˚ ( x 0 , δ 2 ) x\in \mathring U(x_0,\delta_2) xU˚(x0,δ2) β \beta β有界。
無窮小函數的乘積是無窮小函數。
無窮小數列的乘積是無窮小數列。

定理(函數和差積商的極限運算法則):自變量同一變化過程,兩個函數的各自的極限存在,其和差積商的極限為各自極限的和差積商。(函數作為被除數時極限值不為零。)

x → x 0 x\rightarrow x_0 xx0為例,數學表達為:如果 lim ⁡ x → x 0 f ( x ) = A \lim \limits_{x\rightarrow x_0}f(x)=A xx0limf(x)=A lim ⁡ x → x 0 g ( x ) = B \lim \limits_{x\rightarrow x_0}g(x)=B xx0limg(x)=B
1) lim ⁡ x → x 0 [ f ( x ) ± g ( x ) ] = lim ⁡ x → x 0 f ( x ) ± lim ⁡ x → x 0 g ( x ) = A ± B \lim \limits_{x\rightarrow x_0}\left[f(x)\pm g(x)\right]=\lim \limits_{x\rightarrow x_0}f(x)\pm \lim \limits_{x\rightarrow x_0}g(x)=A\pm B xx0lim[f(x)±g(x)]=xx0limf(x)±xx0limg(x)=A±B
2) lim ⁡ x → x 0 [ f ( x ) ⋅ g ( x ) ] = lim ⁡ x → x 0 f ( x ) ⋅ lim ⁡ x → x 0 g ( x ) = A ⋅ B \lim \limits_{x\rightarrow x_0}\left[f(x)\cdot g(x)\right]=\lim \limits_{x\rightarrow x_0}f(x)\cdot \lim \limits_{x\rightarrow x_0}g(x)=A\cdot B xx0lim[f(x)g(x)]=xx0limf(x)xx0limg(x)=AB
3)若 B ≠ 0 B\ne 0 B=0 , lim ⁡ x → x 0 f ( x ) g ( x ) = lim ⁡ x → x 0 f ( x ) lim ⁡ x → x 0 g ( x ) = A B \displaystyle \lim \limits_{x\rightarrow x_0}\frac{f(x)}{g(x)}=\frac{\lim \limits_{x\rightarrow x_0}f(x)}{\lim \limits_{x\rightarrow x_0}g(x)}= \frac{A}{B} xx0limg(x)f(x)=xx0limg(x)xx0limf(x)=BA
x → ∞ x \rightarrow \infty x類似。)

證明思路:根據無窮小和函數極限關係定理,當 x → x 0 x\rightarrow x_0 xx0 f ( x ) = A + α f(x)=A+\alpha f(x)=A+α g ( x ) = B + β g(x)=B+\beta g(x)=B+β α \alpha α β \beta β是無窮小。
1) f ( x ) + g ( x ) = A + α + B + β = ( A + B ) + ( α + β ) f(x)+ g(x)=A+\alpha+B+\beta=(A+B)+(\alpha+\beta) f(x)+g(x)=A+α+B+β=(A+B)+(α+β),由於兩個無窮小的和是無窮小,故 f ( x ) + g ( x ) f(x)+g(x) f(x)+g(x)是常數與無窮小之和,那麽,根據無窮小和函數極限關係定理 f ( x ) + g ( x ) f(x)+g(x) f(x)+g(x)的極限存在,極限為常數,即 lim ⁡ x → x 0 [ f ( x ) + g ( x ) ] = A + B = lim ⁡ x → x 0 f ( x ) + lim ⁡ x → x 0 g ( x ) \lim \limits_{x\rightarrow x_0}[f(x)+g(x)]=A+B=\lim \limits_{x\rightarrow x_0}f(x)+ \lim \limits_{x\rightarrow x_0}g(x) xx0lim[f(x)+g(x)]=A+B=xx0limf(x)+xx0limg(x)

− g ( x ) = − B − β -g(x)=-B-\beta g(x)=Bβ − β -\beta β也是無窮小。
f ( x ) − g ( x ) = ( A − B ) + ( α − β ) f(x)-g(x)=(A-B)+(\alpha-\beta) f(x)g(x)=(AB)+(αβ) f ( x ) − g ( x ) f(x)-g(x) f(x)g(x)也是常數與無窮小之和,故 f ( x ) − g ( x ) f(x)-g(x) f(x)g(x)的極限存在,且極限等於常數,即 lim ⁡ x → x 0 [ f ( x ) − g ( x ) ] = A − B = lim ⁡ x → x 0 f ( x ) − lim ⁡ x → x 0 g ( x ) \lim \limits_{x\rightarrow x_0}[f(x)-g(x)]=A-B=\lim \limits_{x\rightarrow x_0}f(x)- \lim \limits_{x\rightarrow x_0}g(x) xx0lim[f(x)g(x)]=AB=xx0limf(x)xx0limg(x)

2) f ( x ) ⋅ g ( x ) = ( A + α ) ( B + β ) = A B + A β + α B + α β f(x)\cdot g(x)=(A+\alpha)(B+\beta)=AB+A\beta+\alpha B+\alpha\beta f(x)g(x)=(A+α)(B+β)=AB+Aβ+αB+αβ,無窮小和常數的乘積為無窮小,無窮小的乘積也為無窮小。故 f ( x ) ⋅ g ( x ) f(x)\cdot g(x) f(x)g(x)為常數和無窮小之和,故 f ( x ) ⋅ g ( x ) f(x)\cdot g(x) f(x)g(x)極限存在,且極限為常數,即 lim ⁡ x → x 0 [ f ( x ) ⋅ g ( x ) ] = A ⋅ B = lim ⁡ x → x 0 f ( x ) ⋅ lim ⁡ x → x 0 g ( x ) \lim \limits_{x\rightarrow x_0}[f(x)\cdot g(x)]=A\cdot B=\lim \limits_{x\rightarrow x_0}f(x)\cdot \lim \limits_{x\rightarrow x_0}g(x) xx0lim[f(x)g(x)]=AB=xx0limf(x)xx0limg(x)

3) f ( x ) g ( x ) − A B = A + α B + β − A B = α B − A β ( B + β ) B \frac{f(x)}{g(x)}-\frac{A}{B}=\frac{A+\alpha}{B+\beta}-\frac{A}{B}=\frac{\alpha B-A\beta}{(B+\beta)B} g(x)f(x)BA=B+βA+αBA=(B+β)BαBAβ α B − A β \alpha B-A\beta αBAβ是無窮小,我們來證明 1 ( B + β ) B \frac{1}{(B+\beta)B} (B+β)B1有界。

即找到一個正數 M M M δ > 0 \delta>0 δ>0,使得一切 x ∈ U ˚ ( x 0 , δ ) x\in \mathring{U}(x_0,\delta) xU˚(x0,δ)內, ∣ 1 ( B + β ) B ∣ < M |\frac{1}{(B+\beta)B}|<\mathrm{M} (B+β)B1<M

lim ⁡ x → x 0 ( B + β ) = B \lim \limits_{x\rightarrow x_0}(B+\beta)=B xx0lim(B+β)=B B ≠ 0 B\ne 0 B=0,根據函數極限的局部保號性定理3’,存在 x 0 x_0 x0的去心鄰域 U ˚ ( x 0 , δ ) \mathring{U}(x_0,\delta) U˚(x0,δ),使得一切 x ∈ U ˚ ( x 0 , δ ) x\in \mathring{U}(x_0,\delta) xU˚(x0,δ) ∣ B + β ∣ > ∣ B ∣ 2 |B+\beta|>\frac{|B|}{2} B+β>2B ∣ 1 ( B + β ) B ∣ = 1 ∣ B + β ∣ ∣ B ∣ < 2 ∣ B ∣ 2 \bigg|\frac{1}{(B+\beta)B}\bigg|=\frac{1}{|B+\beta||B|}<\frac{2}{|B|^2} (B+β)B1 =B+β∣∣B1<B22
M = 2 ∣ B ∣ 2 \mathrm{M}=\frac{2}{|B|^2} M=B22,我們找到了 M \mathrm M M δ \delta δ,證明了函數有界。

f ( x ) g ( x ) − A B = α B − A β ( B + β ) B \frac{f(x)}{g(x)}-\frac{A}{B}=\frac{\alpha B-A\beta}{(B+\beta)B} g(x)f(x)BA=(B+β)BαBAβ α B − A β \alpha B-A\beta αBAβ是無窮小, 1 ( B + β ) B \frac{1}{(B+\beta)B} (B+β)B1有界。有界函數與無窮小的乘積是無窮小。所以 f ( x ) g ( x ) − A B \frac{f(x)}{g(x)}-\frac{A}{B} g(x)f(x)BA是無窮小, f ( x ) g ( x ) \frac{f(x)}{g(x)} g(x)f(x) A B \frac{A}{B} BA與無窮小的和, f ( x ) g ( x ) \frac{f(x)}{g(x)} g(x)f(x)極限存在,且極限是 A B \frac{A}{B} BA lim ⁡ x → x 0 f ( x ) g ( x ) = A B = lim ⁡ x → x 0 f ( x ) lim ⁡ x → x 0 g ( x ) \lim \limits_{x\rightarrow x_0}\frac{f(x)}{g(x)}=\frac{A}{B}=\frac{\lim\limits_{x\rightarrow x_0}f(x)}{\lim\limits_{x\rightarrow x_0}g(x)} xx0limg(x)f(x)=BA=xx0limg(x)xx0limf(x)

x → ∞ x\rightarrow \infty x證明類似。

推論1:如果 lim ⁡ x → x 0 f ( x ) \lim \limits_{x\rightarrow x_0}f(x) xx0limf(x)存在,而c為常數,那麽, lim ⁡ x → x 0 c f ( x ) = c lim ⁡ x → x 0 f ( x ) \lim \limits_{x\rightarrow x_0}cf(x)=c\lim \limits_{x\rightarrow x_0}f(x) xx0limcf(x)=cxx0limf(x)
因為常數可視為常數函數,極限是常數。

推論2:如果 lim ⁡ x → x 0 f ( x ) \lim \limits_{x\rightarrow x_0}f(x) xx0limf(x)存在, lim ⁡ x → x 0 [ f ( x ) ] n = [ lim ⁡ x → x 0 f ( x ) ] n \lim \limits_{x\rightarrow x_0}[f(x)]^n=[\lim \limits_{x\rightarrow x_0}f(x)]^n xx0lim[f(x)]n=[xx0limf(x)]n

定理(數列的極限計算法則):設有數列 x n {x_n} xn y n {y_n} yn,如果 lim ⁡ n → ∞ x n = A \lim\limits_{n\rightarrow \infty}x_n=A nlimxn=A,如果 lim ⁡ n → ∞ y n = B \lim\limits_{n\rightarrow \infty}y_n=B nlimyn=B。那麽,
i) lim ⁡ n → ∞ ( x n ± y n ) = A ± B \lim\limits_{n\rightarrow \infty}(x_n\pm y_n)=A\pm B nlim(xn±yn)=A±B
ii) lim ⁡ n → ∞ ( x n ⋅ y n ) = A ⋅ B \lim\limits_{n\rightarrow \infty}(x_n\cdot y_n)=A\cdot B nlim(xnyn)=AB
iii)當 y n ≠ 0 y_n\ne 0 yn=0 B ≠ 0 B\ne 0 B=0時, lim ⁡ n → ∞ x n y n = A B \lim\limits_{n\rightarrow \infty}\frac{x_n}{y_n}=\frac{A}{B} nlimynxn=BA
證:
i)如果我們用「數列=數列極限+無窮小」以及上述無窮小數列的性質,證明同函數和求極限公式。
但「數列和」求極限的證明可以按定義證明,from scratch。
∀ ε \forall \varepsilon ε ∃ N 1 > 0 \exists N_1>0 N1>0,使得一切 n > N 1 n>N_1 n>N1 ∣ x n − A ∣ < ε / 2 |x_n-A|<\varepsilon/2 xnA<ε/2 ∃ N 2 > 0 \exists N_2>0 N2>0,使得一切 n > N 1 n>N_1 n>N1 ∣ y n − B ∣ < ε / 2 |y_n-B|<\varepsilon/2 ynB<ε/2。令 N = m a x { N 1 , N 2 } N=max\{N_1,N_2\} N=max{N1,N2},則一切 n > N n>N n>N ∣ ( x n + y n ) − ( A + B ) ∣ = ∣ x n − A + y n − B ∣ < ∣ x n − A ∣ + ∣ y n − B ∣ < ε |(x_n+y_n)-(A+B)|=|x_n-A+y_n-B|<|x_n-A|+|y_n-B|<\varepsilon (xn+yn)(A+B)=xnA+ynB<xnA+ynB<ε,故稱 A + B A+B A+B是數列 x n + y n {x_n+y_n} xn+yn的極限, lim ⁡ n → ∞ ( x n + y n ) = A + B = lim ⁡ n → ∞ x n + lim ⁡ n → ∞ y n \lim \limits_{n\rightarrow \infty}(x_n+y_n)=A+B=\lim\limits_{n\rightarrow \infty}x_n+\lim\limits_{n\rightarrow \infty}y_n nlim(xn+yn)=A+B=nlimxn+nlimyn

結論:數列之和求極限等於數列各自求極限之和。

我們來證數列 { − y n } \{-y_n\} {yn}的極限是 − B -B B
∣ − y n − ( − B ) ∣ = ∣ y n − B ∣ < ε |-y_n-(-B)|=|y_n-B|<\varepsilon yn(B)=ynB<ε,故 { − y n } \{-y_n\} {yn}的極限是 − B -B B
所以,數列 { x n − y n } \{x_n-y_n\} {xnyn}的極限可看成數列 { x n + ( − y n ) } \{x_n+(-y_n)\} {xn+(yn)}的極限。數列的和求極限等於數列各自求極限之和,故 lim ⁡ n → ∞ ( x n − y n ) = lim ⁡ n → ∞ [ x n + ( − y n ) ] = lim ⁡ n → ∞ x n + lim ⁡ n → ∞ ( − y n ) = A − B = lim ⁡ n → ∞ x n − lim ⁡ n → ∞ y n \lim \limits_{n\rightarrow \infty}(x_n-y_n)=\lim \limits_{n\rightarrow \infty}[x_n+(-y_n)]=\lim\limits_{n\rightarrow \infty}x_n+\lim\limits_{n\rightarrow \infty}(-y_n)=A-B=\lim\limits_{n\rightarrow \infty}x_n-\lim\limits_{n\rightarrow \infty}y_n nlim(xnyn)=nlim[xn+(yn)]=nlimxn+nlim(yn)=AB=nlimxnnlimyn

結論:數列之差求極限等於數列各自求極限之差。

ii)數列的乘積求極限公式的證明我們要用到:數列=數列極限+無窮小;以及上述無窮小數列的性質。從定義出發證明,不直觀。

iii)數列的商求極限公式也要用到:數列=數列極限+無窮小;以及上述無窮小數列的性質。證明同函數的商求極限公式。

定理(複合函數的極限運算法則):設函數 y = f [ g ( x ) ] y=f[g(x)] y=f[g(x)]是由函數 u = g ( x ) u=g(x) u=g(x)與函數 y = f ( u ) y=f(u) y=f(u)複合而成, f [ g ( x ) ] f[g(x)] f[g(x)]在點 x 0 x_0 x0的某去心鄰域內有定義,若 lim ⁡ x → x 0 g ( x ) = u 0 \lim \limits_{x\rightarrow x_0}g(x)=u_0 xx0limg(x)=u0 lim ⁡ u → u 0 f ( x ) = A \lim \limits_{u\rightarrow u_0}f(x)=A uu0limf(x)=A,且存在 δ 0 \delta_0 δ0,當 x ∈ U ˚ ( x 0 , δ ) x\in \mathring{U}(x_0,\delta) xU˚(x0,δ)時,有 g ( x ) ≠ u 0 g(x)\ne u_0 g(x)=u0,則 lim ⁡ x → x 0 f [ g ( x ) ] = lim ⁡ u → u 0 f ( u ) = A \lim\limits_{x\rightarrow x_0}f[g(x)]=\lim\limits_{u\rightarrow u_0}f(u)=A xx0limf[g(x)]=uu0limf(u)=A

證:由於 lim ⁡ u → u 0 f ( u ) = A \lim\limits_{u\rightarrow u_0}f(u)=A uu0limf(u)=A ∀ ε > 0 \forall \varepsilon>0 ε>0 ∃ δ 1 > 0 \exists \delta_1>0 δ1>0,使得一切 u ∈ U ˚ ( u 0 , δ 1 ) u\in \mathring{U}(u_0,\delta_1) uU˚(u0,δ1) ∣ f ( u ) − A ∣ < ε |f(u)-A|<\varepsilon f(u)A<ε
由於 lim ⁡ x → x 0 g ( x ) = u 0 \lim\limits_{x\rightarrow x_0}g(x)=u_0 xx0limg(x)=u0,令 ε 2 = δ 1 \varepsilon_2=\delta_1 ε2=δ1 ∃ δ 2 > 0 \exists \delta_2>0 δ2>0,使得 0 < ∣ x − x 0 ∣ < δ 2 0<|x-x_0|<\delta_2 0<xx0<δ2 ∣ g ( x ) − u 0 ∣ < ε 2 = δ 1 |g(x)-u_0|<\varepsilon_2=\delta_1 g(x)u0<ε2=δ1。又當 x ∈ U ˚ ( x 0 , δ 1 ) x\in \mathring{U}(x_0,\delta_1) xU˚(x0,δ1) g ( x ) ≠ 0 g(x)\ne 0 g(x)=0,令 δ = m i n { δ 1 , δ 2 } \delta=min\{\delta_1,\delta_2\} δ=min{δ1,δ2},當一切 x ∈ U ˚ ( x 0 , δ ) x\in \mathring{U}(x_0,\delta) xU˚(x0,δ) 0 < ∣ g ( x ) − u 0 ∣ < ε 2 = δ 1 0<|g(x)-u_0|<\varepsilon_2=\delta_1 0<g(x)u0<ε2=δ1,即 g ( x ) ∈ U ˚ ( u 0 , δ 1 ) g(x)\in \mathring{U}(u_0,\delta_1) g(x)U˚(u0,δ1),所以, ∣ f [ g ( x ) ] − A ∣ < ε |f[g(x)]-A|<\varepsilon f[g(x)]A<ε

總結: ∀ ε > 0 \forall \varepsilon>0 ε>0 ∃ δ > 0 \exists \delta>0 δ>0,使得 0 < ∣ x − x 0 ∣ < δ 0<|x-x_0|<\delta 0<xx0<δ ∣ f [ g ( x ) ] − A ∣ < ε |f[g(x)]-A|<\varepsilon f[g(x)]A<ε,所以, lim ⁡ x → x 0 f [ g ( x ) ] = A \lim\limits_{x\rightarrow x_0}f[g(x)]=A xx0limf[g(x)]=A

複合函數是函數的嵌套,求極限時,做代換, u = g ( x ) u=g(x) u=g(x) f ( u ) f(u) f(u),求極限為兩個函數從裏層到外層依次求極限。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值