極限運算法則即函數的和、差、積、商、複合求極限的法則。即
以
x
→
x
0
x\rightarrow x_0
x→x0為例,數學表達為:如果
lim
x
→
x
0
f
(
x
)
=
A
\lim \limits_{x\rightarrow x_0}f(x)=A
x→x0limf(x)=A,
lim
x
→
x
0
g
(
x
)
=
B
\lim \limits_{x\rightarrow x_0}g(x)=B
x→x0limg(x)=B。
1)
lim
x
→
x
0
[
f
(
x
)
±
g
(
x
)
]
=
lim
x
→
x
0
f
(
x
)
±
lim
x
→
x
0
g
(
x
)
=
A
±
B
\lim \limits_{x\rightarrow x_0}\left[f(x)\pm g(x)\right]=\lim \limits_{x\rightarrow x_0}f(x)\pm \lim \limits_{x\rightarrow x_0}g(x)=A\pm B
x→x0lim[f(x)±g(x)]=x→x0limf(x)±x→x0limg(x)=A±B。
2)
lim
x
→
x
0
[
f
(
x
)
⋅
g
(
x
)
]
=
lim
x
→
x
0
f
(
x
)
⋅
lim
x
→
x
0
g
(
x
)
=
A
⋅
B
\lim \limits_{x\rightarrow x_0}\left[f(x)\cdot g(x)\right]=\lim \limits_{x\rightarrow x_0}f(x)\cdot \lim \limits_{x\rightarrow x_0}g(x)=A\cdot B
x→x0lim[f(x)⋅g(x)]=x→x0limf(x)⋅x→x0limg(x)=A⋅B。
3)若
B
≠
0
B\ne 0
B=0 ,
lim
x
→
x
0
f
(
x
)
g
(
x
)
=
lim
x
→
x
0
f
(
x
)
lim
x
→
x
0
g
(
x
)
=
A
B
\lim \limits_{x\rightarrow x_0}\frac{f(x)}{g(x)}=\frac{\lim \limits_{x\rightarrow x_0}f(x)}{\lim \limits_{x\rightarrow x_0}g(x)}= \frac{A}{B}
x→x0limg(x)f(x)=x→x0limg(x)x→x0limf(x)=BA。
4)函數
y
=
f
[
g
(
x
)
]
y=f[g(x)]
y=f[g(x)]是由函數
u
=
g
(
x
)
u=g(x)
u=g(x)與函數
y
=
f
(
u
)
y=f(u)
y=f(u)複合而成,若
lim
x
→
x
0
g
(
x
)
=
u
0
\lim \limits_{x\rightarrow x_0}g(x)=u_0
x→x0limg(x)=u0,
lim
u
→
u
0
f
(
x
)
=
A
\lim \limits_{u\rightarrow u_0}f(x)=A
u→u0limf(x)=A,則
lim
x
→
x
0
f
[
g
(
x
)
]
=
lim
u
→
u
0
f
(
u
)
=
A
\lim\limits_{x\rightarrow x_0}f[g(x)]=\lim\limits_{u\rightarrow u_0}f(u)=A
x→x0limf[g(x)]=u→u0limf(u)=A。
以上是函數極限運算法則,本文我們也證明數列的極限運算法則,以函數為主線,對應地寫數列的情況。
為了證明函數極限運算法則,我們需要使用『函數=極限值+無窮小』的公式,和無窮小的性質。
定理1 兩個無窮小的和是無窮小。
證:設
α
\alpha
α,
β
\beta
β是兩個無窮小,
∀
ε
>
0
\forall \varepsilon>0
∀ε>0,
∃
δ
1
>
0
\exists \delta_1>0
∃δ1>0,
0
<
∣
x
−
x
0
∣
<
δ
1
0<|x-x_0|<\delta_1
0<∣x−x0∣<δ1,
∣
α
∣
<
ε
/
2
|\alpha|<\varepsilon/2
∣α∣<ε/2。
∃
δ
2
>
0
\exists \delta_2>0
∃δ2>0,
0
<
∣
x
−
x
0
∣
<
δ
2
0<|x-x_0|<\delta_2
0<∣x−x0∣<δ2,
∣
β
∣
<
ε
/
2
|\beta|<\varepsilon/2
∣β∣<ε/2。令
δ
=
m
i
n
{
δ
1
,
δ
2
}
\delta=min\{\delta_1,\delta_2\}
δ=min{δ1,δ2},
∣
α
+
β
∣
⩽
∣
α
∣
+
∣
β
∣
<
ε
|\alpha+\beta|\leqslant|\alpha|+|\beta|<\varepsilon
∣α+β∣⩽∣α∣+∣β∣<ε。故,
α
+
β
\alpha+\beta
α+β是無窮小。
推論:有限個無窮小之和是無窮小。
我們來證明:兩個無窮小數列之和是無窮小數列。
證:設數列
{
x
n
}
\{x_n\}
{xn}、
{
y
n
}
\{y_n\}
{yn}是兩個無窮小,
∀
ε
>
0
\forall \varepsilon>0
∀ε>0,
∃
N
1
\exists N_1
∃N1,使得
n
>
N
1
n>N_1
n>N1,
∣
x
n
∣
<
ε
/
2
|x_n|<\varepsilon/2
∣xn∣<ε/2。
∃
N
2
\exists N_2
∃N2,使得
n
>
N
2
n>N_2
n>N2,
∣
y
n
∣
<
ε
/
2
|y_n|<\varepsilon/2
∣yn∣<ε/2。令
N
=
m
a
x
{
N
1
,
N
2
}
N=max\{N_1,N_2\}
N=max{N1,N2},則
n
>
N
n>N
n>N時,
∣
x
n
+
y
n
∣
<
∣
x
n
∣
+
∣
y
n
∣
<
ε
|x_n+y_n|<|x_n|+|y_n|<\varepsilon
∣xn+yn∣<∣xn∣+∣yn∣<ε。所以,數列
{
x
n
+
y
n
}
\{x_n+y_n\}
{xn+yn}也是無窮小。
定理:有界函數與無窮小的乘積是無窮小。
證:設函數
u
u
u在
x
0
x_0
x0的某個去心鄰域
U
˚
(
x
0
,
δ
1
)
\mathring U(x_0,\delta_1)
U˚(x0,δ1)是有界的,即
∃
M
>
0
\exists M>0
∃M>0,
∣
u
∣
⩽
M
|u|\leqslant M
∣u∣⩽M,對一切
x
∈
U
˚
(
x
0
,
δ
1
)
x\in \mathring U(x_0,\delta_1)
x∈U˚(x0,δ1)成立。
又設
α
\alpha
α是無窮小,即
∀
ε
>
0
\forall \varepsilon>0
∀ε>0,
∃
x
0
\exists x_0
∃x0的某個去心鄰域
U
˚
(
x
0
,
δ
2
)
\mathring U(x_0,\delta_2)
U˚(x0,δ2),使得
∣
α
∣
<
ε
M
|\alpha|<\frac{\varepsilon}{M}
∣α∣<Mε。
令
δ
=
m
i
n
{
δ
1
,
δ
2
}
\delta=min\{\delta_1,\delta_2\}
δ=min{δ1,δ2},則一切
x
∈
U
(
x
0
,
δ
)
x \in U(x_0,\delta)
x∈U(x0,δ),
∣
u
α
∣
=
∣
u
∣
∣
α
∣
<
M
×
ε
M
=
ε
|u\alpha|=|u||\alpha|<M\times\frac{\varepsilon}{M}=\varepsilon
∣uα∣=∣u∣∣α∣<M×Mε=ε。故,
x
→
x
0
x\rightarrow x_0
x→x0,
u
α
u\alpha
uα是無窮小。
(
x
→
∞
x\rightarrow \infty
x→∞證明類似。)
我們來證明:有界數列與無窮小數列的乘積是無窮小數列。
證:設數列
{
x
n
}
\{x_n\}
{xn}有界,則
∃
M
\exists M
∃M,一切
x
n
x_n
xn,
∣
x
n
∣
⩽
M
|x_n|\leqslant M
∣xn∣⩽M。數列
{
y
n
}
\{y_n\}
{yn}是無窮小,
∀
ε
>
0
\forall \varepsilon>0
∀ε>0,
∃
N
>
0
\exists N>0
∃N>0,
n
>
N
n>N
n>N,
∣
y
n
∣
<
ε
/
M
|y_n|<\varepsilon/M
∣yn∣<ε/M。
∣
x
n
⋅
y
n
∣
⩽
∣
x
n
∣
∣
y
n
∣
<
M
⋅
ε
M
=
ε
|x_n\cdot y_n|\leqslant |x_n||y_n|<M\cdot \frac{\varepsilon}{M}=\varepsilon
∣xn⋅yn∣⩽∣xn∣∣yn∣<M⋅Mε=ε,所以數列
{
x
n
⋅
y
n
}
\{x_n\cdot y_n\}
{xn⋅yn}是無窮小數列。
推論1:常數與無窮小的乘積是無窮小。特別地, α \alpha α為無窮小, − α -\alpha −α也為無窮小。
推論2:有限個無窮小的乘積是無窮小。
提示:無窮小必有界。設
β
\beta
β是無窮小。令
ε
=
1
\varepsilon=1
ε=1,
∃
x
0
\exists x_0
∃x0的某個去心鄰域
U
˚
(
x
0
,
δ
)
\mathring U(x_0,\delta)
U˚(x0,δ),
∣
β
∣
<
1
|\beta|<1
∣β∣<1,即
x
∈
U
˚
(
x
0
,
δ
2
)
x\in \mathring U(x_0,\delta_2)
x∈U˚(x0,δ2),
β
\beta
β有界。
無窮小函數的乘積是無窮小函數。
無窮小數列的乘積是無窮小數列。
定理(函數和差積商的極限運算法則):自變量同一變化過程,兩個函數的各自的極限存在,其和差積商的極限為各自極限的和差積商。(函數作為被除數時極限值不為零。)
以
x
→
x
0
x\rightarrow x_0
x→x0為例,數學表達為:如果
lim
x
→
x
0
f
(
x
)
=
A
\lim \limits_{x\rightarrow x_0}f(x)=A
x→x0limf(x)=A,
lim
x
→
x
0
g
(
x
)
=
B
\lim \limits_{x\rightarrow x_0}g(x)=B
x→x0limg(x)=B。
1)
lim
x
→
x
0
[
f
(
x
)
±
g
(
x
)
]
=
lim
x
→
x
0
f
(
x
)
±
lim
x
→
x
0
g
(
x
)
=
A
±
B
\lim \limits_{x\rightarrow x_0}\left[f(x)\pm g(x)\right]=\lim \limits_{x\rightarrow x_0}f(x)\pm \lim \limits_{x\rightarrow x_0}g(x)=A\pm B
x→x0lim[f(x)±g(x)]=x→x0limf(x)±x→x0limg(x)=A±B
2)
lim
x
→
x
0
[
f
(
x
)
⋅
g
(
x
)
]
=
lim
x
→
x
0
f
(
x
)
⋅
lim
x
→
x
0
g
(
x
)
=
A
⋅
B
\lim \limits_{x\rightarrow x_0}\left[f(x)\cdot g(x)\right]=\lim \limits_{x\rightarrow x_0}f(x)\cdot \lim \limits_{x\rightarrow x_0}g(x)=A\cdot B
x→x0lim[f(x)⋅g(x)]=x→x0limf(x)⋅x→x0limg(x)=A⋅B
3)若
B
≠
0
B\ne 0
B=0 ,
lim
x
→
x
0
f
(
x
)
g
(
x
)
=
lim
x
→
x
0
f
(
x
)
lim
x
→
x
0
g
(
x
)
=
A
B
\displaystyle \lim \limits_{x\rightarrow x_0}\frac{f(x)}{g(x)}=\frac{\lim \limits_{x\rightarrow x_0}f(x)}{\lim \limits_{x\rightarrow x_0}g(x)}= \frac{A}{B}
x→x0limg(x)f(x)=x→x0limg(x)x→x0limf(x)=BA
(
x
→
∞
x \rightarrow \infty
x→∞類似。)
證明思路:根據無窮小和函數極限關係定理,當
x
→
x
0
x\rightarrow x_0
x→x0,
f
(
x
)
=
A
+
α
f(x)=A+\alpha
f(x)=A+α,
g
(
x
)
=
B
+
β
g(x)=B+\beta
g(x)=B+β,
α
\alpha
α、
β
\beta
β是無窮小。
1)
f
(
x
)
+
g
(
x
)
=
A
+
α
+
B
+
β
=
(
A
+
B
)
+
(
α
+
β
)
f(x)+ g(x)=A+\alpha+B+\beta=(A+B)+(\alpha+\beta)
f(x)+g(x)=A+α+B+β=(A+B)+(α+β),由於兩個無窮小的和是無窮小,故
f
(
x
)
+
g
(
x
)
f(x)+g(x)
f(x)+g(x)是常數與無窮小之和,那麽,根據無窮小和函數極限關係定理,
f
(
x
)
+
g
(
x
)
f(x)+g(x)
f(x)+g(x)的極限存在,極限為常數,即
lim
x
→
x
0
[
f
(
x
)
+
g
(
x
)
]
=
A
+
B
=
lim
x
→
x
0
f
(
x
)
+
lim
x
→
x
0
g
(
x
)
\lim \limits_{x\rightarrow x_0}[f(x)+g(x)]=A+B=\lim \limits_{x\rightarrow x_0}f(x)+ \lim \limits_{x\rightarrow x_0}g(x)
x→x0lim[f(x)+g(x)]=A+B=x→x0limf(x)+x→x0limg(x)。
−
g
(
x
)
=
−
B
−
β
-g(x)=-B-\beta
−g(x)=−B−β,
−
β
-\beta
−β也是無窮小。
f
(
x
)
−
g
(
x
)
=
(
A
−
B
)
+
(
α
−
β
)
f(x)-g(x)=(A-B)+(\alpha-\beta)
f(x)−g(x)=(A−B)+(α−β),
f
(
x
)
−
g
(
x
)
f(x)-g(x)
f(x)−g(x)也是常數與無窮小之和,故
f
(
x
)
−
g
(
x
)
f(x)-g(x)
f(x)−g(x)的極限存在,且極限等於常數,即
lim
x
→
x
0
[
f
(
x
)
−
g
(
x
)
]
=
A
−
B
=
lim
x
→
x
0
f
(
x
)
−
lim
x
→
x
0
g
(
x
)
\lim \limits_{x\rightarrow x_0}[f(x)-g(x)]=A-B=\lim \limits_{x\rightarrow x_0}f(x)- \lim \limits_{x\rightarrow x_0}g(x)
x→x0lim[f(x)−g(x)]=A−B=x→x0limf(x)−x→x0limg(x)
2) f ( x ) ⋅ g ( x ) = ( A + α ) ( B + β ) = A B + A β + α B + α β f(x)\cdot g(x)=(A+\alpha)(B+\beta)=AB+A\beta+\alpha B+\alpha\beta f(x)⋅g(x)=(A+α)(B+β)=AB+Aβ+αB+αβ,無窮小和常數的乘積為無窮小,無窮小的乘積也為無窮小。故 f ( x ) ⋅ g ( x ) f(x)\cdot g(x) f(x)⋅g(x)為常數和無窮小之和,故 f ( x ) ⋅ g ( x ) f(x)\cdot g(x) f(x)⋅g(x)極限存在,且極限為常數,即 lim x → x 0 [ f ( x ) ⋅ g ( x ) ] = A ⋅ B = lim x → x 0 f ( x ) ⋅ lim x → x 0 g ( x ) \lim \limits_{x\rightarrow x_0}[f(x)\cdot g(x)]=A\cdot B=\lim \limits_{x\rightarrow x_0}f(x)\cdot \lim \limits_{x\rightarrow x_0}g(x) x→x0lim[f(x)⋅g(x)]=A⋅B=x→x0limf(x)⋅x→x0limg(x)
3) f ( x ) g ( x ) − A B = A + α B + β − A B = α B − A β ( B + β ) B \frac{f(x)}{g(x)}-\frac{A}{B}=\frac{A+\alpha}{B+\beta}-\frac{A}{B}=\frac{\alpha B-A\beta}{(B+\beta)B} g(x)f(x)−BA=B+βA+α−BA=(B+β)BαB−Aβ, α B − A β \alpha B-A\beta αB−Aβ是無窮小,我們來證明 1 ( B + β ) B \frac{1}{(B+\beta)B} (B+β)B1有界。
即找到一個正數 M M M和 δ > 0 \delta>0 δ>0,使得一切 x ∈ U ˚ ( x 0 , δ ) x\in \mathring{U}(x_0,\delta) x∈U˚(x0,δ)內, ∣ 1 ( B + β ) B ∣ < M |\frac{1}{(B+\beta)B}|<\mathrm{M} ∣(B+β)B1∣<M。
lim
x
→
x
0
(
B
+
β
)
=
B
\lim \limits_{x\rightarrow x_0}(B+\beta)=B
x→x0lim(B+β)=B,
B
≠
0
B\ne 0
B=0,根據函數極限的局部保號性定理3’,存在
x
0
x_0
x0的去心鄰域
U
˚
(
x
0
,
δ
)
\mathring{U}(x_0,\delta)
U˚(x0,δ),使得一切
x
∈
U
˚
(
x
0
,
δ
)
x\in \mathring{U}(x_0,\delta)
x∈U˚(x0,δ),
∣
B
+
β
∣
>
∣
B
∣
2
|B+\beta|>\frac{|B|}{2}
∣B+β∣>2∣B∣。
∣
1
(
B
+
β
)
B
∣
=
1
∣
B
+
β
∣
∣
B
∣
<
2
∣
B
∣
2
\bigg|\frac{1}{(B+\beta)B}\bigg|=\frac{1}{|B+\beta||B|}<\frac{2}{|B|^2}
(B+β)B1
=∣B+β∣∣B∣1<∣B∣22。
令
M
=
2
∣
B
∣
2
\mathrm{M}=\frac{2}{|B|^2}
M=∣B∣22,我們找到了
M
\mathrm M
M和
δ
\delta
δ,證明了函數有界。
f ( x ) g ( x ) − A B = α B − A β ( B + β ) B \frac{f(x)}{g(x)}-\frac{A}{B}=\frac{\alpha B-A\beta}{(B+\beta)B} g(x)f(x)−BA=(B+β)BαB−Aβ, α B − A β \alpha B-A\beta αB−Aβ是無窮小, 1 ( B + β ) B \frac{1}{(B+\beta)B} (B+β)B1有界。有界函數與無窮小的乘積是無窮小。所以 f ( x ) g ( x ) − A B \frac{f(x)}{g(x)}-\frac{A}{B} g(x)f(x)−BA是無窮小, f ( x ) g ( x ) \frac{f(x)}{g(x)} g(x)f(x)是 A B \frac{A}{B} BA與無窮小的和, f ( x ) g ( x ) \frac{f(x)}{g(x)} g(x)f(x)極限存在,且極限是 A B \frac{A}{B} BA。 lim x → x 0 f ( x ) g ( x ) = A B = lim x → x 0 f ( x ) lim x → x 0 g ( x ) \lim \limits_{x\rightarrow x_0}\frac{f(x)}{g(x)}=\frac{A}{B}=\frac{\lim\limits_{x\rightarrow x_0}f(x)}{\lim\limits_{x\rightarrow x_0}g(x)} x→x0limg(x)f(x)=BA=x→x0limg(x)x→x0limf(x)。
x → ∞ x\rightarrow \infty x→∞證明類似。
推論1:如果
lim
x
→
x
0
f
(
x
)
\lim \limits_{x\rightarrow x_0}f(x)
x→x0limf(x)存在,而c為常數,那麽,
lim
x
→
x
0
c
f
(
x
)
=
c
lim
x
→
x
0
f
(
x
)
\lim \limits_{x\rightarrow x_0}cf(x)=c\lim \limits_{x\rightarrow x_0}f(x)
x→x0limcf(x)=cx→x0limf(x)。
因為常數可視為常數函數,極限是常數。
推論2:如果 lim x → x 0 f ( x ) \lim \limits_{x\rightarrow x_0}f(x) x→x0limf(x)存在, lim x → x 0 [ f ( x ) ] n = [ lim x → x 0 f ( x ) ] n \lim \limits_{x\rightarrow x_0}[f(x)]^n=[\lim \limits_{x\rightarrow x_0}f(x)]^n x→x0lim[f(x)]n=[x→x0limf(x)]n
定理(數列的極限計算法則):設有數列
x
n
{x_n}
xn和
y
n
{y_n}
yn,如果
lim
n
→
∞
x
n
=
A
\lim\limits_{n\rightarrow \infty}x_n=A
n→∞limxn=A,如果
lim
n
→
∞
y
n
=
B
\lim\limits_{n\rightarrow \infty}y_n=B
n→∞limyn=B。那麽,
i)
lim
n
→
∞
(
x
n
±
y
n
)
=
A
±
B
\lim\limits_{n\rightarrow \infty}(x_n\pm y_n)=A\pm B
n→∞lim(xn±yn)=A±B;
ii)
lim
n
→
∞
(
x
n
⋅
y
n
)
=
A
⋅
B
\lim\limits_{n\rightarrow \infty}(x_n\cdot y_n)=A\cdot B
n→∞lim(xn⋅yn)=A⋅B;
iii)當
y
n
≠
0
y_n\ne 0
yn=0且
B
≠
0
B\ne 0
B=0時,
lim
n
→
∞
x
n
y
n
=
A
B
\lim\limits_{n\rightarrow \infty}\frac{x_n}{y_n}=\frac{A}{B}
n→∞limynxn=BA;
證:
i)如果我們用「數列=數列極限+無窮小」以及上述無窮小數列的性質,證明同函數和求極限公式。
但「數列和」求極限的證明可以按定義證明,from scratch。
∀
ε
\forall \varepsilon
∀ε,
∃
N
1
>
0
\exists N_1>0
∃N1>0,使得一切
n
>
N
1
n>N_1
n>N1,
∣
x
n
−
A
∣
<
ε
/
2
|x_n-A|<\varepsilon/2
∣xn−A∣<ε/2;
∃
N
2
>
0
\exists N_2>0
∃N2>0,使得一切
n
>
N
1
n>N_1
n>N1,
∣
y
n
−
B
∣
<
ε
/
2
|y_n-B|<\varepsilon/2
∣yn−B∣<ε/2。令
N
=
m
a
x
{
N
1
,
N
2
}
N=max\{N_1,N_2\}
N=max{N1,N2},則一切
n
>
N
n>N
n>N,
∣
(
x
n
+
y
n
)
−
(
A
+
B
)
∣
=
∣
x
n
−
A
+
y
n
−
B
∣
<
∣
x
n
−
A
∣
+
∣
y
n
−
B
∣
<
ε
|(x_n+y_n)-(A+B)|=|x_n-A+y_n-B|<|x_n-A|+|y_n-B|<\varepsilon
∣(xn+yn)−(A+B)∣=∣xn−A+yn−B∣<∣xn−A∣+∣yn−B∣<ε,故稱
A
+
B
A+B
A+B是數列
x
n
+
y
n
{x_n+y_n}
xn+yn的極限,
lim
n
→
∞
(
x
n
+
y
n
)
=
A
+
B
=
lim
n
→
∞
x
n
+
lim
n
→
∞
y
n
\lim \limits_{n\rightarrow \infty}(x_n+y_n)=A+B=\lim\limits_{n\rightarrow \infty}x_n+\lim\limits_{n\rightarrow \infty}y_n
n→∞lim(xn+yn)=A+B=n→∞limxn+n→∞limyn。
結論:數列之和求極限等於數列各自求極限之和。
我們來證數列
{
−
y
n
}
\{-y_n\}
{−yn}的極限是
−
B
-B
−B。
∣
−
y
n
−
(
−
B
)
∣
=
∣
y
n
−
B
∣
<
ε
|-y_n-(-B)|=|y_n-B|<\varepsilon
∣−yn−(−B)∣=∣yn−B∣<ε,故
{
−
y
n
}
\{-y_n\}
{−yn}的極限是
−
B
-B
−B。
所以,數列
{
x
n
−
y
n
}
\{x_n-y_n\}
{xn−yn}的極限可看成數列
{
x
n
+
(
−
y
n
)
}
\{x_n+(-y_n)\}
{xn+(−yn)}的極限。數列的和求極限等於數列各自求極限之和,故
lim
n
→
∞
(
x
n
−
y
n
)
=
lim
n
→
∞
[
x
n
+
(
−
y
n
)
]
=
lim
n
→
∞
x
n
+
lim
n
→
∞
(
−
y
n
)
=
A
−
B
=
lim
n
→
∞
x
n
−
lim
n
→
∞
y
n
\lim \limits_{n\rightarrow \infty}(x_n-y_n)=\lim \limits_{n\rightarrow \infty}[x_n+(-y_n)]=\lim\limits_{n\rightarrow \infty}x_n+\lim\limits_{n\rightarrow \infty}(-y_n)=A-B=\lim\limits_{n\rightarrow \infty}x_n-\lim\limits_{n\rightarrow \infty}y_n
n→∞lim(xn−yn)=n→∞lim[xn+(−yn)]=n→∞limxn+n→∞lim(−yn)=A−B=n→∞limxn−n→∞limyn。
結論:數列之差求極限等於數列各自求極限之差。
ii)數列的乘積求極限公式的證明我們要用到:數列=數列極限+無窮小;以及上述無窮小數列的性質。從定義出發證明,不直觀。
iii)數列的商求極限公式也要用到:數列=數列極限+無窮小;以及上述無窮小數列的性質。證明同函數的商求極限公式。
定理(複合函數的極限運算法則):設函數 y = f [ g ( x ) ] y=f[g(x)] y=f[g(x)]是由函數 u = g ( x ) u=g(x) u=g(x)與函數 y = f ( u ) y=f(u) y=f(u)複合而成, f [ g ( x ) ] f[g(x)] f[g(x)]在點 x 0 x_0 x0的某去心鄰域內有定義,若 lim x → x 0 g ( x ) = u 0 \lim \limits_{x\rightarrow x_0}g(x)=u_0 x→x0limg(x)=u0, lim u → u 0 f ( x ) = A \lim \limits_{u\rightarrow u_0}f(x)=A u→u0limf(x)=A,且存在 δ 0 \delta_0 δ0,當 x ∈ U ˚ ( x 0 , δ ) x\in \mathring{U}(x_0,\delta) x∈U˚(x0,δ)時,有 g ( x ) ≠ u 0 g(x)\ne u_0 g(x)=u0,則 lim x → x 0 f [ g ( x ) ] = lim u → u 0 f ( u ) = A \lim\limits_{x\rightarrow x_0}f[g(x)]=\lim\limits_{u\rightarrow u_0}f(u)=A x→x0limf[g(x)]=u→u0limf(u)=A。
證:由於
lim
u
→
u
0
f
(
u
)
=
A
\lim\limits_{u\rightarrow u_0}f(u)=A
u→u0limf(u)=A,
∀
ε
>
0
\forall \varepsilon>0
∀ε>0,
∃
δ
1
>
0
\exists \delta_1>0
∃δ1>0,使得一切
u
∈
U
˚
(
u
0
,
δ
1
)
u\in \mathring{U}(u_0,\delta_1)
u∈U˚(u0,δ1),
∣
f
(
u
)
−
A
∣
<
ε
|f(u)-A|<\varepsilon
∣f(u)−A∣<ε。
由於
lim
x
→
x
0
g
(
x
)
=
u
0
\lim\limits_{x\rightarrow x_0}g(x)=u_0
x→x0limg(x)=u0,令
ε
2
=
δ
1
\varepsilon_2=\delta_1
ε2=δ1,
∃
δ
2
>
0
\exists \delta_2>0
∃δ2>0,使得
0
<
∣
x
−
x
0
∣
<
δ
2
0<|x-x_0|<\delta_2
0<∣x−x0∣<δ2,
∣
g
(
x
)
−
u
0
∣
<
ε
2
=
δ
1
|g(x)-u_0|<\varepsilon_2=\delta_1
∣g(x)−u0∣<ε2=δ1。又當
x
∈
U
˚
(
x
0
,
δ
1
)
x\in \mathring{U}(x_0,\delta_1)
x∈U˚(x0,δ1)有
g
(
x
)
≠
0
g(x)\ne 0
g(x)=0,令
δ
=
m
i
n
{
δ
1
,
δ
2
}
\delta=min\{\delta_1,\delta_2\}
δ=min{δ1,δ2},當一切
x
∈
U
˚
(
x
0
,
δ
)
x\in \mathring{U}(x_0,\delta)
x∈U˚(x0,δ),
0
<
∣
g
(
x
)
−
u
0
∣
<
ε
2
=
δ
1
0<|g(x)-u_0|<\varepsilon_2=\delta_1
0<∣g(x)−u0∣<ε2=δ1,即
g
(
x
)
∈
U
˚
(
u
0
,
δ
1
)
g(x)\in \mathring{U}(u_0,\delta_1)
g(x)∈U˚(u0,δ1),所以,
∣
f
[
g
(
x
)
]
−
A
∣
<
ε
|f[g(x)]-A|<\varepsilon
∣f[g(x)]−A∣<ε。
總結: ∀ ε > 0 \forall \varepsilon>0 ∀ε>0, ∃ δ > 0 \exists \delta>0 ∃δ>0,使得 0 < ∣ x − x 0 ∣ < δ 0<|x-x_0|<\delta 0<∣x−x0∣<δ, ∣ f [ g ( x ) ] − A ∣ < ε |f[g(x)]-A|<\varepsilon ∣f[g(x)]−A∣<ε,所以, lim x → x 0 f [ g ( x ) ] = A \lim\limits_{x\rightarrow x_0}f[g(x)]=A x→x0limf[g(x)]=A。
複合函數是函數的嵌套,求極限時,做代換, u = g ( x ) u=g(x) u=g(x), f ( u ) f(u) f(u),求極限為兩個函數從裏層到外層依次求極限。