概率论第二章 随机变量的分布与数字特征

本文概述了随机变量的基本概念,包括离散型和连续型随机变量的分布函数、概率密度、数学期望、方差及其性质。详细介绍了常见分布如两点分布、均匀分布、二项分布、几何分布、超几何分布、泊松分布、均匀分布、指数分布和正态分布的期望和方差计算。
摘要由CSDN通过智能技术生成

(ps:主要依照课本目录总结一下要记的公式期望和方差,概念去课本上看)

2.1、随机变量及其分布

        一、随机变量的概念

随机变量一般用大写XYZ表示,取值一般用小写xyz表示

        二、离散型随机变量的概率分布

        三、分布函数

                分布函数性质

1、单调性:若x1<=x2,则F(x1)<=F(x2);(单调递增)

2、F(负无穷)=0,F(正无穷)=1

2、右连续性:F(x+0)=F(x)

        四、离散型随机变量的分布函数

区间概率表示:(概率分布p与分布函数F之间转换)

        p(x<=a)=F(a)

        p(x<a)=F(a-0)

        p(x=a)=F(a)-F(a-0)

        p(a<x<=b)=F(b)-F(a)

        p(a<=x<=b)=F(b)-F(a-0)

        p(a<x<b)=F(b-0)-F(a)

        p(a<=x<b)=F(b-0)-F(a-0)

        p(a<x)=p(x>b)=1-F(a)

由于连续型p(x=a)=0,所以若F(x)连续,则4-7相等     

        五、连续型随机变量及其概率密度

                        概率密度性质

1、f(x)>=0,在其定义域内

2、全定义域积分为1

2.2、随机变量的数字特征

        一、离散型随机变量的数学期望

取值与概率乘积求和

        二、连续型随机变量的数学期望

取值与概率乘积求积分

        三、随机变量函数的数学期望

        四、数学期望的性质

1、对任意常数a,E(a)=a

2、如果E(X),E(Y)存在,对任意实数a

E(X+Y)=E(X)+E(Y),E(XY)=E(X)E(Y),E(X+a)=E(X)+a

        五、随机变量的方差

D(X)=E([X−E(X)]^2)

D(X)=E(X^2)−E2(X)

        六、方差的性质

Da=0

D(X+a)=D(X)

D(aX)=a^2D(X)

2.3、常用的离散型分布

        一、退化分布

不分布,以概率1取某一常数a

                期望和方差

E(X)=a

D(X)=0

        二、两点分布

                1、定义

在一次伯努利试验中,P(A)=p,P(\overline{A})=q=1-p,若用X记事件A出现的次数,P(X=k)=p^{k}q^{1-k}k=0,1  称X服从两点分布(0-1)分布

                2、期望和方差

E(X)=p

D(X)=p(1-p)

        三、均匀分布

                 1、定义

共有n次不可能的取值,且取每一个值的可能性都相等,即p\left \{ X=x_{_{i}} \right \}=\frac{1}{n},i=1,2,3,...,n

                 2、期望和方差

E(X)=\overline{x}

D(X)=\frac{1}{n}\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}

        四、二项分布

                 1、定义

在n重伯努利试验中,若事件A出现的次数记为X,随机变量X可能的值是0,1,2,...,n,相应概率分布为P(X=k)=C_{n}^{k}p^{k}q^{n-k},k=0,1,2,...,n

式中p=P(A),且0< p< 1,q= 1-p,则称X服从参数为n,p的二项分布,记作X\sim B(n,p).

                 2、期望和方差

E(X)=np

D(X)=npq

        五、几何分布

                 1、定义

在伯努利试验中,考虑事件A首次出现时的试验次数X的分布。X的所有可能取值是集合\left \{ 1,2,...,n,... \right \},事件\left \{ X=k \right \}表示A首次出现是在第k次试验,即前k-1次试验都出现\overline{A},而第k次试验出现A,这一事件的概率为

P(X=k)=q^{k-1}p,k=1,2,...,n,...

上式是几何级数的一般项,因此称为几何分布。记作X\sim G(p),0<p<1。显然有

\sum_{k=1}^{\infty }P(X=k)=\sum_{k=1}^{\infty }q^{k-1}p=p\sum_{k=1}^{\infty }q^{k-1}=p\frac{1}{1-q}=1

                 2、期望和方差

E(X)=1/p

D(X)=q/p^2

        六、超几何分布

                 1、定义

现有N件产品,其中有M件次品,今从中任取n件(不放回抽取),则这n件中所含的次品数X是一离散型随机变量,其概率分布为

P\left \{ X=k \right \}=\frac{C_{M}^{k}C_{N-M}^{n-k}}{C_{N}^{n}}

其中l=min\left \{ M,n \right \}。通常称这个概率分布为超几何分布。记作X\sim H(N,n,M)

   

        七、泊松分布

                 1、定义

 如果随机变量X的概率分布为

P(X=k)=\frac{\lambda ^{k}}{k!}e^{-\lambda },k=0,1,2,...

式中\lambda >0是常数,则称X服从以\lambda为参数的泊松分布,记作X\sim P(\lambda )

自然界中的很多稀疏现象都服从或近似服从泊松分布,所以泊松分布又称为稀疏现象律

泊松分布的最可能值为\left [ \lambda \right ],若\lambda为整数,则最可能值为\lambda\lambda -1.

                 2、期望和方差

E(X)=D(X)=\lambda

2.4、常用的连续型分布

一、均匀分布

                 1、定义

在取值范围(a,b)内取得任意一点的概率相等,记为X~U(a,b)

                 2、期望和方差

E(X)=(a+b)/2

D(X)=(b-a)^2/12

二、指数分布

                 1、定义

若随机变量X的概率密度为

则称X服从参数为λ的指数分布,记为X~e(λ)

因此得到分布函数为

                 2、期望和方差

E(X)=1/λ

D(X)=1/λ^2

三、正态分布

                 1、定义

概率密度函数为

则称X服从参数为μ,σ的正态分布,记为X~N(μ,σ^2)

分布函数为

                 2、期望和方差

E(X)=\mu

D(X)=\sigma ^{^{2}}

                 3、标准正态分布

特别的,当μ=0,σ=1时,X服从标准正态分布,此时概率密度函数写为φ(x),分布函数写为Φ(x)

因为,若X~N(μ,σ^2),则Z=(X-μ)/σ服从标准正态分布,所以

2.5、随机变量函数的分布

  • 29
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值