概率论第二章 随机变量及其概率分布

一、随机变量及其分布函数

1、随机变量  

随机变量X,Y,Z是定义在样本空间Ω上的实值函数X=X(ω),ω∈Ω

①离散型   取值是一个一个的,分布函数 用分布律表示

②连续型   取值是连续的,分布函数 用积分表示(下限为-∞,上限为x)   

引进连续型随机变量的目的:把微积分引进来(考的多)

离散型随机变量 

连续型随机变量 


2、分布律(概率分布)

注意:分布律(又称概率分布)只有离散型随机变量有,概率密度(又称密度函数)只有连续性随机变量有。

离散型…分布律:随机变量X的可能取值+各可能值的概率

写法一:

写法二: 

题型:给出离散型随机变量的分布率,要求写出分布函数

 

 通法:

 

 等号写在左边。概率值相加。

分布律的性质/充要条件  

①各可能值的概率都≥0 ②各可能值的概率之和是1


3、随机变量X的分布函数F(x)

分布函数F(x)是定义在(-∞,+∞)上的一个实值函数。F(x)的值等于随机变量X在区间( -∞,x ]内取值的概率,即事件“X≤x”的概率。

分布函数的性质/充要条件  ①单调不减②F(-∞)=0,F(+∞)=1③右连续

分布函数的其他性质:

分布函数的三个充要条件要背住!

题型:离散型随机变量的分布函数F(x),可作出新的分布函数(四选一)

原理:分布函数的充要条件 ①单调不减②F(-∞)=0,F(+∞)=1③右连续

步骤

1、计算新函数的F(-∞)和F(+∞),看是否符合充要条件

2、看是否右连续     若F(x)右连续→ 新函数F(2x)也右连续

3、看是否单调不减

题型:给定离散型随机变量的分布函数F(x),求概率P{X=1}。

原理:P{X=1}= F(X)-F(X-0)= F(X+0)-F(X-0)    右极限-左极限

步骤:计算新函数的F(-∞)和F(+∞),看是否符合充要条件

题型:离散型随机变量的分布函数F1(x),F2(x),组合成新的函数F(x)=aF1(x)-bF2(x),求参数a和b。

原理:函数F(x)成为某一随机变量的分布函数的充要条件 ①单调不减②F(-∞)=0,F(+∞)=1③右连续

步骤

1、计算新函数的F(-∞)和F(+∞),看什么情况下符合充要条件

2、看是否右连续    函数F1(x)、F2(x)右连续 →组合成新函数 F(x)=aF1(x)-bF2(x)也右连续

3、看什么情况下单调不减


4、概率密度(密度函数)

定义:

连续型随机变量的分布函数F(x)一定是连续函数(变上限积分函数一定连续),但其密度函数f(x)不一定是连续函数。

 概率密度(密度函数)的性质/充要条件

①概率密度≥0 ②概率密度在-∞~+∞上积分=1

类似于分布律(概率分布)的性质/充要条件:

密度函数的其他性质:

★连续型随机变量,等号差一点无所谓!

同理也有:P{ X<k }= P{ X≤k }

原因:连续型随机变量在某一点的概率值为0。

也可用画图法求解相关题目:作出密度函数f(x)的图像,由图形面积推F(x)值

分布函数F(x)是关于密度函数f(x)的定积分,定积分几何意义:图形面积


二、常用分布     背住五个B、P、U、E、N

特点,定义,记号、参数

离散型随机变量X服从:0-1分布、二项分布B(n,p)、几何分布、超几何分布、泊松分布P(λ)

主要背住二项分布B(n,p)、泊松分布P(λ)!!

0-1分布

二项分布

几何分布、超几何分布

泊松分布


连续型随机变量X服从:均匀分布、指数分布、正态分布

均匀分布

均匀分布的分布函数:

 

★常考的性质

X服从均匀分布时,求概率P{c≤X≤d},不用傻傻的算定积分!!只用算长度之比

推广:X~U[a,b],则P{X≤d}= (d-a)/(b-a)


指数分布

区别于泊松分布:  有k,没有x(指数分布有x,没有k)

指数分布的性质

★性质直接背结论!

无记忆性——条件概率(若X是某一元件的寿命,已知元件已经使用了s 小时(条件),则它总共使用 t+s 小时的条件概率= 从开始使用时算起它至少使用t小时的概率 )

注意:三个连续型随机变量的分布:均匀分布、指数分布、正态分布。均匀分布直接量尺寸,正态分布太复杂不好求积分,只有指数分布可以求积分(指数分布的三个性质一定要背出来!常考)


正态分布

正态分布的性质

 

★标准化:若X~N(μ,σ^2),则(X-μ)/σ~N(0,1)

正态分布会用到查表,Φ(x)值一般很难由φ(x)积分得到,都由φ(x)图像对称性求得。

★正态题型四要素:查表、标准化、对称性、定参数或指数。

做题顺序:看正态表Φ(x)  有→查表,没有→

                  看Φ(x)  有→标准化,没有→

                  看φ(x)图形对称性、定参数

积分是不可能积的!!

题型:标准化+图形对称性


三、随机变量函数的分布

设X是一个随机变量,则关于它的函数Y=g(X)也是随机变量。

当X是离散型随机变量,Y=g(X)也是离散的。

★当X是连续型随机变量, Y=g(X)一般也是连续的,也会出现不离散也不连续的(考过一两次,强化班再讲)

如何求Y的分布?①公式法(积分代换,复杂易错,不用) ②定义法

 

定义法步骤:①写定义,记得移项 ②讨论范围,求积分 ③看端点

常考题型:已知X的分布,求Y=g(X)的分布。     ★属于我的易错点,知识盲区!

步骤:①写定义,记得移项 ②讨论范围,求积分 ③看端点

关键:如何对y的取值进行分类

可以记住结论,考过多次:若Y=F(X),则Y~U(0,1).

题型:max、min

关键:P{max(X,2)≤y}= P{X≤y,2≤y}        逗号的含义是交,表示两个事件都发生

  • 7
    点赞
  • 32
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
概率论中的二维随机变量是指由两个随机变量组成的一种数学模型。它可以用来描述两个不同事件之间的关系和相互影响。 以下是一些与二维随机变量相关的重要知识点: 1. 概率密度函数(PDF):对于连续型二维随机变量,概率密度函数描述了其取值的概率分布情况。它可以通过对二维随机变量进行积分来计算概率。 2. 边缘分布:边缘分布指的是二维随机变量中每个单独变量的概率分布。通过边缘分布,可以计算某一个变量的概率,而忽略其他变量的取值情况。 3. 条件分布:条件分布指的是在给定另一个变量取值的条件下,某一个变量的概率分布。条件分布可以用来描述两个变量之间的依赖关系和相互影响。 4. 相关性和独立性:二维随机变量的相关性描述了两个变量之间的线性关系程度,可以通过协方差或相关系数来衡量。如果两个变量相互独立,则它们之间没有任何线性关系。 5. 边缘期望和协方差:边缘期望是指每个变量的期望值,可以用来描述随机变量的平均取值情况。协方差衡量了两个变量之间的总体线性关系,可以通过协方差矩阵来表示。 6. 线性变换和线性组合:对二维随机变量进行线性变换或线性组合可以得到新的随机变量。这些新的变量可能具有特定的概率分布和相关性。 这些是概率论中关于二维随机变量的一些重要知识点,希望能对你有所帮助。如果你还有其他问题,请继续提问。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值