【负荷预测】基于CEEMDAN-CNN-BiGRU的负荷预测研究(Python代码实现)

                                          💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

基于CEEMDAN-CNN-BiGRU的负荷预测研究文档

一、引言

二、模型架构

1. 数据预处理

2. CEEMDAN分解

3. 特征提取

4. 时间序列建模

5. 模型训练与评估

三、实验与结果

1. 实验设置

2. 实验结果

3. 案例分析

四、模型优势与局限性

1. 优势

2. 局限性

五、结论与展望

📚2 运行结果

🎉3 参考文献

🌈4 Python代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于CEEMDAN-CNN-BiGRU的负荷预测研究文档

一、引言

负荷预测是电力系统中至关重要的任务,对于电力系统的规划、调度和运维具有重要意义。然而,由于负荷数据具有高度的非线性和非平稳性,传统的预测方法往往难以达到理想的预测效果。本研究旨在提出一种基于CEEMDAN(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise)、卷积神经网络(CNN)和双向门控循环单元(BiGRU)的负荷预测模型,以期提高预测精度和鲁棒性。

二、模型架构
1. 数据预处理
  • 数据收集:从电力系统中获取历史负荷数据及相关影响因素(如天气、节假日等)。
  • 数据清洗:处理缺失值、异常值等问题,确保数据的完整性和准确性。
  • 数据归一化:将不同量纲的数据转换到同一尺度,以便于后续处理。
2. CEEMDAN分解

CEEMDAN是一种改进的经验模态分解算法,通过添加自适应噪声,使分解结果更加稳定和准确。将原始负荷数据分解为多个本征模态函数(IMF)和一个残差分量。这一步骤有助于降低数据的复杂度和提高预测精度。

3. 特征提取
  • 对每个IMF进行特征工程:提取出对预测有用的特征。
  • CNN层:构建卷积神经网络层,用于捕捉每个IMF的局部特征,如波动模式和趋势。CNN通过卷积层和池化层来提取输入数据的空间特征,并将其转化为高维特征向量。
4. 时间序列建模
  • BiGRU层:在CNN层之后接入双向门控循环单元层,利用其双向性捕捉时间序列数据中的长期依赖关系。BiGRU可以同时考虑过去和未来的信息,从而更好地捕捉序列数据中的动态变化规律。
5. 模型训练与评估
  • 选择合适的损失函数(如均方误差MSE)和优化算法(如Adam优化器)。
  • 使用交叉验证等方法避免过拟合,同时调整网络结构和超参数以优化模型性能。
  • 使用多种评估指标(如MSE、RMSE、MAE等)对预测结果进行评估。
三、实验与结果
1. 实验设置
  • 数据集:采用电力负荷预测相关的数据集,如《电力负荷预测数据2.xlsx》等。
  • 编程环境:Python 3.x,相关库包括tensorflow、keras等。
2. 实验结果

通过CEEMDAN分解后的负荷数据,每个IMF分别构建预测模型进行预测,最终将各分量的预测结果相加得到最终的预测值。实验结果表明,相较于单一模型(如LSTM、CNN-LSTM等),CEEMDAN-CNN-BiGRU模型在预测精度上有显著提升。

评估指标单一模型CEEMDAN-CNN-BiGRU
MSE较高值显著降低
RMSE较高值显著降低
MAE较高值显著降低
3. 案例分析

选择具体案例进行详细分析,展示模型在不同场景下的应用效果。例如,在节假日、极端天气条件下的预测效果,并分析模型的稳定性和适应性。

四、模型优势与局限性
1. 优势
  • 多尺度特征提取:CEEMDAN能够有效提取负荷数据中的多尺度特征,降低数据复杂度。
  • 高效时间序列建模:CNN和BiGRU的结合能够高效捕捉负荷数据中的空间和时间特征。
  • 预测精度高:通过多分量预测和结果集成,提高了整体预测精度。
2. 局限性
  • 数据依赖性:模型性能受数据质量影响较大,需要高质量、完整的数据集。
  • 计算复杂度:模型复杂度较高,需要较强的计算资源支持。
  • 过拟合风险:需要合理设置模型参数和训练策略,避免过拟合问题。
五、结论与展望

本研究提出了一种基于CEEMDAN-CNN-BiGRU的负荷预测模型,并通过实验验证了其有效性。该模型在电力负荷预测中表现出较高的预测精度和鲁棒性,为电力系统的优化调度和运行提供了有力支持。未来研究可以进一步优化模型结构、引入更多影响因素、提高模型的可解释性等方向展开。

📚2 运行结果

部分代码:

table = PrettyTable(['测试集指标','MSE', 'RMSE', 'MAE', 'MAPE','R2'])
for i in range(n_out):
    # 遍历每一个预测步长。每一列代表一步预测,现在是在求每步预测的指标
    actual = [float(row[i]) for row in Ytest]  #一列列提取
    # 从测试集中提取实际值。
    predicted = [float(row[i]) for row in predicted_data]
    # 从预测结果中提取预测值。
    mse = mean_squared_error(actual, predicted)
    # 计算均方误差(MSE)。
    mse_dic.append(mse)
    rmse = sqrt(mean_squared_error(actual, predicted))
    # 计算均方根误差(RMSE)。
    rmse_dic.append(rmse)
    mae = mean_absolute_error(actual, predicted)
    # 计算平均绝对误差(MAE)。
    mae_dic.append(mae)
    MApe = mape(actual, predicted)
    # 计算平均绝对百分比误差(MAPE)。
    mape_dic.append(MApe)
    r2 = r2_score(actual, predicted)
    # 计算R平方值(R2)。
    r2_dic.append(r2)
    if n_out == 1:
        strr = '预测结果指标:'
    else:
        strr = '第'+ str(i + 1)+'步预测结果指标:'
    table.add_row([strr, mse, rmse, mae, str(MApe)+'%', str(r2*100)+'%'])

return mse_dic,rmse_dic, mae_dic, mape_dic, r2_dic, table
# 返回包含所有评估指标的字典.

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]肖白,高文瑞.基于CEEMDAN-LSTM的空间负荷预测方法[J].电力自动化设备, 2023, 43(3):7.

[2]郭权杰.基于CEEMDAN-LSTM模型的短期负荷预测研究与应用[D].天津理工大学,2023.

[3]冯建强,宋昆仑.基于CEEMDAN-LSTM的桥梁变形时间序列预测研究[J].地理空间信息, 2023, 21(7):40-43.

[4]王清亮,代一凡,王旭东,等.基于ICEEMDAN-LSTM-BNN的短期光伏发电功率概率预测[J].西安科技大学学报, 2023, 43(3):593-602.

🌈4 Python代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值