Decision Tree Regressor (决策树) --- 论文实战

一、前言

       在《机器学习论文复现实战---linear regression》中通过Pearson 相关性分析,去除了2个高相关性特征 "PN" 和 "AN" ,数据维度变为890*25(数据集地址

 这里我们不做前期处理,直接就将数据放入 DecisionTreeRegressor 模型中进行训练了。

二、模型训练过程

 2.1  导入Python库

'''====================导入Python库===================='''
import pandas as pd               #python科学计算库
import numpy as np                #Python的一个开源数据分析处理库。
import matplotlib.pyplot as plt   #常用Python画图工具
from sklearn.tree import DecisionTreeRegressor  # 导入 DecisionTreeRegressor 模型
from sklearn.model_selection import train_test_split # 数据划分模块
from sklearn.preprocessing import StandardScaler   # 标准化模块
from sklearn.metrics import mean_squared_error,r2_score   #误差函数MSE,误差函数R^2,
from sklearn.model_selection import GridSearchCV     #超参数网格搜索

2.2  导入数据 

'''========================导入数据========================'''
data = pd.read_excel('D:/复现/trainset_loop6.xlsx')  #读取xlsx格式数据
# date = pd.read_csv('D:/复现/trainset_loop6.csv')   #读取csv格式数据
print(data.isnull().sum())   #检查数据中是否存在缺失值
print(data.shape)   #检查维度
print(data.columns) #数据的标签
data = data.drop(["PN","AN"], axis = 1) #axis = 1表示对列进行处理,0表示对行
Y, X = data['Eads'] , data.drop(['Eads'] , axis = 1) #对Y、X分别赋值

 2.3  标准化

'''=========================标准化========================'''
#利用StandardScaler函数对X进行标准化处理
scaler = StandardScaler()
X = scaler.fit_transform(X)
'''====================划分训练集与测试集==================='''
X_train,X_test,y_train,y_test = train_test_split(X , Y , test_size=0.2 , random_state=42)

2.4  模型训练

'''=======================模型训练========================'''
#模型训练
model = DecisionTreeRegressor()   # 模型实例化。
'''======================超参数======================='''
# "squared_error":平均平方误差,即方差减少,使用每个终端节点的平均值最小化L2损失;
# "friedman_mse":使用平均平方误差与Friedman改进得分寻找潜在的分裂;
# "absolute_error":平均绝对误差,使用每个终端节点的中位数最小化L1损失;
# "poisson":使用减少泊松偏差寻找分裂。
# splitter 参数决定了选择每个节点分割的策略,可选的策略有:"best":选择最佳分割;"random":选择最佳随机分割。
# max_depth 参数限制了树的最大深度。如果未设置,节点将继续展开直到所有叶子都是纯净的,或者每个叶子包含的样本少于 min_samples_split 指定的数量。
# min_samples_split 参数规定了分割内部节点所需的最小样本数。可以是整数或者浮点数,如果是浮点数,则表示最小样本数占总样本数的比例。
# min_samples_leaf 参数指定了一个叶子节点所需的最小样本数。这个参数可以平滑模型,特别是在回归中。
# max_features 参数决定了寻找最佳分割时考虑的特征数量。可以是整数、浮点数、"sqrt" 或 "log2"。
# random_state 参数控制估计器的随机性。即使 splitter 设置为 "best",特征在每次分割时也会随机排列。
# min_impurity_decrease 参数表示如果分割导致不纯度的减少大于或等于该值,则会进行分割。
# ccp_alpha 参数用于最小成本复杂性剪枝。选择成本复杂性最大且小于 ccp_alpha 的子树。


# 定义超参数网格。
max_depth = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21]
min_samples_leaf = [1,3,5,7,9,11,13,15,17]
# 网格搜索,cv = 5表示进行5折交叉验证
grid_search = GridSearchCV(estimator = model,cv = 5, param_grid={'max_depth': max_depth,'min_samples_leaf':min_samples_leaf}, scoring='neg_mean_squared_error')
grid_search.fit(X_train, y_train)
# 最佳模型与超参数
best_model = grid_search.best_estimator_  # 最佳模型
best_max_depth = grid_search.best_params_['max_depth']  # 最佳超参数L1正则
best_min_samples_leaf = grid_search.best_params_['min_samples_leaf']  # 最佳超参数#L2正则
print(f'Best max_depth:{best_max_depth:.3f}',"\n",f'Best_min_samples_leaf:{best_min_samples_leaf:.3f}')

 通过 GridSearchCV 搜索最优的 Best alpha:

Best max_depth:9.000 
Best_min_samples_leaf:11.000

 2.5  模型预测与评估

'''=======================模型预测========================'''
# best_model模型预测
y_pred_train = best_model.predict(X_train)
y_pred_test = best_model.predict(X_test)
#评估
mse_train=mean_squared_error(y_train,y_pred_train)  #均方误差越小模型越好
mse_test=mean_squared_error(y_test,y_pred_test)     #R2 表示模型对因变量的解释能力,取值范围从 0 ~ 1,越接近 1 表示模型对数据的拟合程度越好。
r2_train=r2_score(y_train,y_pred_train)
r2_test=r2_score(y_test,y_pred_test)
print(f'MSE(Train):{mse_train:.3f}')  #保留2位小数
print(f'MSE(Test):{mse_test:.3f}')
print(f'R^2(Train):{r2_train:.3f}')
print(f'R^2(Test):{r2_test:.3f}')

 MSE与R^{2}结果:  

MSE(Train):0.050
MSE(Test):0.079
R^2(Train):0.762
R^2(Test):0.569

  2.6  可视化 

'''======================结果可视化======================='''
plt.figure(figsize=(8,8))
plt.rcParams['font.sans-serif'] = ['Microsoft YaHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
colors = ['b', 'r']  # 设置颜色
markers = ["*","o"]  # 设置点的形状
Y_train_picture = [y_train,y_test]          #可视化图的x轴数据
Y_pred_picture = [y_pred_train,y_pred_test] #可视化图的y轴数据
for i in range(0,2):
    plt.scatter(Y_train_picture[i],
                Y_pred_picture[i],
                s = 20,  # 表示点的大小
                c = colors[i],  # 颜色
                marker = markers[i],  # 点的形状
                edgecolors='b',  # 散点边框颜色
                alpha=0.6)  # 透明度
plt.plot([-1.0,1.0],[-1.0,1.0],'r--')  #可视化图数据范围
plt.xlabel('Actual')     #x轴标签
plt.ylabel('Predicted')  #y轴标签
plt.legend(['train', 'test'], loc='upper right',frameon=False) #图例,位置位于右上方,去掉图例边框
plt.title('Actual vs Predicted',fontsize=15, c='r')
# 将图保存为*.jpg图
plt.savefig('./DecisionTreeRegressor_可视化.jpg',dpi = 1200) #在当前文件夹下保存jpg格式图,dpi = 1200
plt.show()

 此图表示,数据点越靠近中间红线模型越好。

三、代码全部注释 

'''====================导入Python库===================='''
import pandas as pd               #python科学计算库
import numpy as np                #Python的一个开源数据分析处理库。
import matplotlib.pyplot as plt   #常用Python画图工具
from sklearn.tree import DecisionTreeRegressor  # 导入 DecisionTreeRegressor 模型
from sklearn.model_selection import train_test_split # 数据划分模块
from sklearn.preprocessing import StandardScaler   # 标准化模块
from sklearn.metrics import mean_squared_error,r2_score   #误差函数MSE,误差函数R^2,
from sklearn.model_selection import GridSearchCV     #超参数网格搜索

'''========================导入数据========================'''
data = pd.read_excel('D:/复现/trainset_loop6.xlsx')  #读取xlsx格式数据
# date = pd.read_csv('D:/复现/trainset_loop6.csv')   #读取csv格式数据
print(data.isnull().sum())   #检查数据中是否存在缺失值
print(data.shape)   #检查维度
print(data.columns) #数据的标签
data = data.drop(["PN","AN"], axis = 1) #axis = 1表示对列进行处理,0表示对行
Y, X = data['Eads'] , data.drop(['Eads'] , axis = 1) #对Y、X分别赋值

'''=========================标准化========================'''
#利用StandardScaler函数对X进行标准化处理
scaler = StandardScaler()
X = scaler.fit_transform(X)
'''====================划分训练集与测试集==================='''
X_train,X_test,y_train,y_test = train_test_split(X , Y , test_size=0.2 , random_state=42)



'''=======================模型训练========================'''
#模型训练
model = DecisionTreeRegressor()   # 模型实例化。
'''======================超参数======================='''
# "squared_error":平均平方误差,即方差减少,使用每个终端节点的平均值最小化L2损失;
# "friedman_mse":使用平均平方误差与Friedman改进得分寻找潜在的分裂;
# "absolute_error":平均绝对误差,使用每个终端节点的中位数最小化L1损失;
# "poisson":使用减少泊松偏差寻找分裂。
# splitter 参数决定了选择每个节点分割的策略,可选的策略有:"best":选择最佳分割;"random":选择最佳随机分割。
# max_depth 参数限制了树的最大深度。如果未设置,节点将继续展开直到所有叶子都是纯净的,或者每个叶子包含的样本少于 min_samples_split 指定的数量。
# min_samples_split 参数规定了分割内部节点所需的最小样本数。可以是整数或者浮点数,如果是浮点数,则表示最小样本数占总样本数的比例。
# min_samples_leaf 参数指定了一个叶子节点所需的最小样本数。这个参数可以平滑模型,特别是在回归中。
# max_features 参数决定了寻找最佳分割时考虑的特征数量。可以是整数、浮点数、"sqrt" 或 "log2"。
# random_state 参数控制估计器的随机性。即使 splitter 设置为 "best",特征在每次分割时也会随机排列。
# min_impurity_decrease 参数表示如果分割导致不纯度的减少大于或等于该值,则会进行分割。
# ccp_alpha 参数用于最小成本复杂性剪枝。选择成本复杂性最大且小于 ccp_alpha 的子树。


# 定义超参数网格。
max_depth = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21]
min_samples_leaf = [1,3,5,7,9,11,13,15,17]
# 网格搜索,cv = 5表示进行5折交叉验证
grid_search = GridSearchCV(estimator = model,cv = 5, param_grid={'max_depth': max_depth,'min_samples_leaf':min_samples_leaf}, scoring='neg_mean_squared_error')
grid_search.fit(X_train, y_train)
# 最佳模型与超参数
best_model = grid_search.best_estimator_  # 最佳模型
best_max_depth = grid_search.best_params_['max_depth']  # 最佳超参数L1正则
best_min_samples_leaf = grid_search.best_params_['min_samples_leaf']  # 最佳超参数#L2正则
print(f'Best max_depth:{best_max_depth:.3f}',"\n",f'Best_min_samples_leaf:{best_min_samples_leaf:.3f}')

'''=======================模型预测========================'''
# best_model模型预测
y_pred_train = best_model.predict(X_train)
y_pred_test = best_model.predict(X_test)
#评估
mse_train=mean_squared_error(y_train,y_pred_train)  #均方误差越小模型越好
mse_test=mean_squared_error(y_test,y_pred_test)     #R2 表示模型对因变量的解释能力,取值范围从 0 ~ 1,越接近 1 表示模型对数据的拟合程度越好。
r2_train=r2_score(y_train,y_pred_train)
r2_test=r2_score(y_test,y_pred_test)
print(f'MSE(Train):{mse_train:.3f}')  #保留2位小数
print(f'MSE(Test):{mse_test:.3f}')
print(f'R^2(Train):{r2_train:.3f}')
print(f'R^2(Test):{r2_test:.3f}')


'''======================结果可视化======================='''
plt.figure(figsize=(8,8))
plt.rcParams['font.sans-serif'] = ['Microsoft YaHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
colors = ['b', 'r']  # 设置颜色
markers = ["*","o"]  # 设置点的形状
Y_train_picture = [y_train,y_test]          #可视化图的x轴数据
Y_pred_picture = [y_pred_train,y_pred_test] #可视化图的y轴数据
for i in range(0,2):
    plt.scatter(Y_train_picture[i],
                Y_pred_picture[i],
                s = 20,  # 表示点的大小
                c = colors[i],  # 颜色
                marker = markers[i],  # 点的形状
                edgecolors='b',  # 散点边框颜色
                alpha=0.6)  # 透明度
plt.plot([-1.0,1.0],[-1.0,1.0],'r--')  #可视化图数据范围
plt.xlabel('Actual')     #x轴标签
plt.ylabel('Predicted')  #y轴标签
plt.legend(['train', 'test'], loc='upper right',frameon=False) #图例,位置位于右上方,去掉图例边框
plt.title('Actual vs Predicted',fontsize=15, c='r')
# 将图保存为*.jpg图
plt.savefig('./DecisionTreeRegressor_可视化.jpg',dpi = 1200) #在当前文件夹下保存jpg格式图,dpi = 1200
plt.show()

 其中,有几个点,需要大家注意下~

      树模型的参数较多,调参复杂,需要仔细调节参数,以找到最优解。(避免过拟合)

持续更新中。。。

  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小码贾

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值