由方波产生正弦波

Uo2:与 Uo1 同频率的正弦波,峰峰值为 1.0Vp-p±0.1Vp-p,波形无明显失真,直流成分小于100mV;(Uo1是由ne555构成的方波)

提示:因 Uo1 方波为奇次谐波组成,即 3KHz 的方波由 3KHz、9KHz 、15KHz 等正弦波组成, 因此 Uo2 可在 Uo1 的基础上通过低通滤波 (滤除 9KHz,15KHz 等频率成分的正弦波) 得到 3KHz 的正弦波。

所以采用低通滤波。

最基础的滤波器是由电阻和电容构建的RC滤波器,有低通和高通滤波器之分,RC滤波器的截止频率的计算公式为:

F(cutoff)=1/(2πRC)。

产生正弦波的设计电路:

### 使用低通和高通滤波器将方波换为正弦波的方法和原理 #### 方法概述 为了实现从方波正弦波变,可以利用低通滤波器去除高频分量并保留基频成分。具体来说,由于方波是由一系列奇次谐波组成的,这些谐波随着次数增加其幅度逐渐减小[^2]。 #### 低通滤波器的工作机制 当一个理想的低通滤波器应用于含有多个频率成分的信号时,它会允许低于某个特定截止频率的所有频率顺利通过而不受影响;而对于那些超过这个界限的较高频率,则会被显著衰减甚至完全阻挡住。对于3kHz的方波而言,在理想情况下,如果设置合适的折频率f_c小于第一个非零谐波(即9kHz),那么输出就只剩下主要的3kHz正弦波部分了[^1]。 ```python import numpy as np from scipy import signal import matplotlib.pyplot as plt # 定义参数 fs = 10e3 # 采样率(Hz) t = np.linspace(0, .05, int(fs*.05), endpoint=False) # 时间向量 square_wave = (signal.square(2 * np.pi * 3e3 * t) + 1)/2 # 创建3kHz方波 b, a = signal.butter(8, 0.1/(fs/2)) # 设计巴特沃斯低通滤波器 filtered_signal = signal.filtfilt(b, a, square_wave) plt.figure(figsize=(10,6)) plt.plot(t[:int(len(t)*0.1)], filtered_signal[:int(len(filtered_signal)*0.1)]) plt.title('Filtered Signal') plt.xlabel('Time [seconds]') plt.ylabel('Amplitude') plt.grid(True) plt.show() ``` 这段代码展示了如何使用Python中的`scipy.signal`库来创建一个模拟环境下的低通滤波过程,并可视化处理后的近似正弦波形。 #### 高通滤波器的应用场景分析 理论上讲,单独应用高通滤波器并不能有效地把方波变成单一频率的理想正弦波,因为这需要移除大量的低频信息而不是保持它们。然而,在某些特殊条件下——比如先经过适当的整形使得原始脉冲更接近于所需的目标形状之后再施加适当配置过的HPF—也可能间接达到目的之一的效果[^4]。 但是需要注意的是,实际操作中很少单纯依靠高通滤波器来进行此类换工作,更多时候还是依赖LPF或者其他类型的带通滤波技术组合方案。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值