文章目录
💯前言
- 我们今天讨论的是ChatGPT新引入的一项创新功能——“@”提及功能,以及它对人工智能领域和特定企业的影响。这项功能展现了人工智能在多任务处理和交流方式上的新进展,并为我们提供了一个全新的视角,帮助更好地理解如何利用人工智能来解决复杂问题。
ChatGPT 的 “@” 提及功能是在 2024 年 1 月 26 日首次推出的。此功能允许用户在对话中通过输入“@”符号快速调用自定义 GPT 模型,从而在一个会话中整合多个模型来处理不同的任务。这一功能使得用户无需切换会话或打开多个窗口,就能高效地在同一对话中调用不同的 GPT 模型。
OpenAI官方文档中对@提及功能的介绍
💯ChatGPT的演变
1. 初代 ChatGPT
- 最早版本的 ChatGPT 主要专注于基础的问答功能,能够处理一些简单的对话任务和信息查询。这一阶段的 ChatGPT 旨在提供高效的对话体验,帮助用户快速获取所需的信息。
2. 增强学习周期
- 随着技术的发展,ChatGPT 引入了基于人类偏好的增强学习(RLHF)技术。通过这种学习方法,ChatGPT 开始能够生成更符合人类期望的回答,显著提升了用户体验。
3. 多模型集成
- 进一步的更新带来了与特定领域模型的集成,例如代码生成和语言翻译等。然而,这些功能的实现往往需要通过特定的 API 调用来完成。
4. “@” 提及功能的诞生
- 最新的更新引入了“@”提及功能,这标志着 ChatGPT 从一个单一的 AI 代理向多代理集成平台的转变。通过“@”功能,用户可以在同一对话中灵活调用多个 GPT 模型,提高了任务处理的效率和灵活性。
💯ChatGPT可选模型介绍
不能被“@”调用的官方模型:
- 首先,ChatGPT官方提供了多个模型选项,包括Auto、GPT-4o、o1、GPT-4o mini,以及GPT-4等。Auto模式自动优化速度与智能性,GPT-4o适合大多数任务,o1适合处理高难度的理工科问题,GPT-4o mini则更适合日常任务,GPT-4作为旧版本依然可选。这些官方模型需要在开始时选择,并且在对话过程中无法通过“@”功能调用或切换。
可以被“@”调用的自定义模型:
- 在ChatGPT的左侧栏有个探索GPT功能区,我们可以在里面找到其他用户上传的自定义GPT模型
- 在探索GPT中的模型都是可以通过“@”功能调用的自定义GPT模型,用户可以根据需求选择并集成到对话中,提升处理多任务的效率。
传统AI代理(AI Agent)
- 传统的 AI 代理是为执行特定任务或提供特定服务而设计的独立系统。这些代理通常在明确的领域内操作,例如语音识别、推荐系统或自然语言处理等。每个 AI 代理都擅长处理其专属领域的问题,但它们之间的交互和集成往往较为有限。
这种方式在处理单一任务时能够表现出色,尤其在某些专业领域的任务中,它们的效率极高。然而,当涉及需要多方面知识或技能的问题时,传统 AI 代理之间的协作通常需要人工干预或额外的协调工作。不同 AI 代理之间的连接和综合能力不足,可能导致用户在复杂任务处理时效率下降,需要人工介入来协调整个流程。
传统使用ChatGPT自定义模型:
- 在旧版本ChatGPT中,若需要使用特定模型生成任务(如文章思维导图),无法在已经启动的官方模型基础上通过“@”功能直接调用其他模型,而是需要重新开始一个新的会话。
- 重新开始一段新的对话,意味着我们需要向该GPT模型重新叙述一遍我们的需求,例如生成文章的思维导图,我们就需要向该模型重新发送一遍文章内容。
- 重新提交文章内容后,思维导图模型成功生成了思维导图。不过,重复操作显得比较繁琐。那么有没有一种方式可以在官方模型的基础上直接调用自定义GPT模型呢?接下来的“@”功能正好能够完美解决这一问题,帮助快速切换和调用不同的GPT模型,实现高效任务处理。
ChatGPT的“@”提及功能
- ChatGPT 的“@”提及功能引入了一种全新的交互模式。它允许用户在一个对话过程中,直接通过输入“@”命令调用多个专业化的 GPT 模型。这种交互方式不仅提升了用户与 AI 之间的互动体验,还极大增强了处理复杂问题的灵活性和效率。
通过这种方式,用户可以在无需中断对话的情况下,灵活调用不同的模型来处理多种任务。无论是需要编程帮助、财务建议,还是其他专业领域的支持,这一功能都使任务处理更加顺畅。
ChatGPT新增的@引用自定义模型功能: - 如下所示,在使用官方模型ChatGPT 4o时,可以直接通过“@”功能调用其他自定义GPT模型,例如思维导图模型。这使得当前对话中的上下文得以保留,避免了重复输入需求,并直接生成所需的思维导图,显著提升了效率。
- “@”功能允许用户在同一对话中调用多个专门的 GPT 模型,协同解决复杂问题。这一创新功能大大拓展了 ChatGPT 的应用场景和处理效率,使得用户可以更灵活地完成多任务处理。
1. 无缝集成多个模型
- 通过“@”功能,用户可以在一个连续的对话中轻松调用多个专业化的 GPT 模型。例如,用户可以通过 @CodeHelperGPT 来获得编程帮助,同时通过 @FinanceAdvisorGPT 获得财务咨询。这种灵活的模型切换,让用户能够在一个对话流程中无缝地处理多个任务,极大提高了工作的便利性。
2. 自定义和灵活性
- 企业和开发者可以根据自身需求定制专门的 GPT 模型,并通过“@”功能将这些模型集成到 ChatGPT 中。这为用户提供了更高的个性化服务,使得 ChatGPT 能够更加精确地满足不同的任务需求。
3. 提高工作效率
- 用户无需频繁切换应用或服务,便能在同一界面内完成多个任务。例如,用户在同一会话中调用不同模型处理不同的问题,大大提高了工作效率,减少了多窗口操作的繁琐。
4. 增强用户体验
- “@”功能使 ChatGPT 的互动方式更加贴近自然的人机对话模式,提升了 AI 与用户之间的互动质量。用户体验得到了显著增强,因为这种对话形式更加灵活和直观,减少了重复输入和切换应用的步骤。
5. 总结
- 总的来说,“@”功能的引入不仅标志着 ChatGPT 技术的重大进步,也为未来 AI 应用的发展指明了方向。通过这种功能,ChatGPT 变得更加灵活高效,可以适应各种复杂的用户需求。这一功能的实现,标志着 AI 应用进入了一个新的时代,其中 AI 的交互性、集成性和多功能性将成为关键的发展方向。
如何使用ChatGPT的“@”提及功能
-
只需在对话框中输入“@,上方会显示最近使用过或搜索过的GPT模型,便于快速调用自定义模型。
-
然后选择您想调用的自定义GPT模型。
-
成功在ChatGPT 4o的官方对话中引入了自定义GPT模型,通过“@”功能可以直接在当前聊天使用插件,并能联系上下文,无需重复输入需求,快速生成思维导图,极大地提高了操作效率。
-
效果如下:成功在官方模型GPT 4o聊天界面调用了自定义模型,并生成思维导图。
核心差异
1. 集成性
-
传统 AI 代理:通常独立运行,代理之间的集成工作需要额外的协调才能实现信息传递和协作。不同的代理之间缺乏协同机制,限制了它们在复杂任务中的表现。
-
@提及功能:通过“@”功能,用户可以在同一个对话界面中无缝集成多个专业化的 GPT 模型,实现真正的多模型协作与信息共享,减少了在不同系统之间切换的繁琐操作。
2. 交互方式
-
传统 AI 代理:用户需要分别与每个独立的 AI 代理互动,通常通过复杂的界面和指令来管理各个代理的工作。这样的交互方式较为复杂,增加了用户的负担。
-
@提及功能:用户可以直接在对话中使用“@”命令,轻松调用多个 AI 模型,简化了多模型交互的复杂度。用户的体验更加自然、流畅,减少了切换和操作的麻烦。
3. 应用灵活性
-
传统 AI 代理:每个代理专注于某一特定任务,在跨任务或跨领域应用时往往受到限制,难以适应复杂的跨领域任务处理需求。
-
@提及功能:通过集成多个专业化 GPT 模型,用户能够灵活地应对跨领域的复杂任务,增强了 AI 系统的应用范围和解决问题的能力,实现了更高的任务处理效率。
4. 用户体验
-
传统 AI 代理:用户需要了解不同代理的功能和使用方式,通常需要较长的学习曲线来熟悉每个系统的操作。
-
@提及功能:提供一致的用户界面和交互方式,显著降低了用户的使用门槛。即便是非技术用户,也能轻松使用 AI 来解决复杂问题,极大地提升了用户体验的流畅性和直观性。
ChatGPT 的“@”提及功能影响
- “@”提及功能的引入,标志着 OpenAI 在构建更加智能、互动的 AI 对话系统上迈出了重要一步。在技术层面,这一创新为多任务处理和人机对话带来了全新的可能性。
通过 @ 功能,用户可以在实践中享受更加丰富的解决方案,AI 技术能够更自然地融入人类的日常工作和生活场景中。这不仅提升了 AI 系统的实际应用价值,还让用户体验到前所未有的个性化、高效服务。
这一创新功能推动了 AI 行业朝着更集成化、交互性强且用户友好的方向发展。它不仅满足了当前多样化的需求,也为未来 AI 系统的扩展和普及奠定了基础。
💯ChatGPT的“@”提及功能多领域提升效率
1. 项目管理优化
- 在项目管理的场景中,“@”提及功能能够整合多个 GPT 模型,帮助实现任务规划、风险评估、时间管理等多方面的操作。项目经理可以通过统一的对话界面与这些模型互动,有效地制定项目计划、监控项目进度和评估潜在的风险。这种集成方式简化了项目管理的复杂性,提升了整体效率和质量。
2. 学术研究辅助
- 在学术研究中,研究人员可以使用 “@”提及功能整合数据分析、文献审阅、统计建模等专业 GPT 模型。这让研究人员能够在一个平台上完成从文献搜索、数据处理到分析解读的整个研究流程,大大减少了时间成本,并提高了研究成果的质量。
3. 医疗咨询服务
- 在医疗咨询中,“@”提及功能能够整合疾病诊断、治疗建议、医学研究等相关 GPT 模型。医生和患者可以通过对话界面快速获取最新的医疗信息,包括治疗方法和医学研究进展。这种方式为医疗咨询提供了更加准确和全面的支持。
4. 内容创作与营销策略
- 对于内容创作者和营销专业人员,“@”提及功能可以整合内容创作、SEO 优化、社交媒体策略等方面的 GPT 模型。从创意构思到内容推广的整个流程更加高效、有序。通过优化内容的质量和可见度,可以有效提升内容的市场表现和品牌影响力。
5. 教育辅导与学习支持
- 在教育领域,“@”提及功能能够整合不同学科的教学辅导 GPT 模型,例如数学解题、写作技巧等。学生可以通过这些模型获得个性化的学习帮助,教师则可以利用这些模型来准备教学内容并提高教学效率。
总结
- 通过以上场景分析可以看到,ChatGPT 的 “@”提及功能在多个应用领域中提升了任务处理的效率和质量。这项功能整合了多个专业化的 GPT 模型,使得 AI 技术的应用更加灵活、广泛,为用户带来了更丰富、高效的服务体验。
💯小结
-
在本文中,我们全面探讨了ChatGPT最新推出的“@”提及功能。这项功能不仅展示了人工智能技术的突破,也为多模型集成与智能交互开创了新的应用空间。通过对多个实际应用场景的分析,我们发现这一功能在项目管理、学术研究、医疗咨询、内容创作与营销、以及教育辅导等领域中展现了显著的优势。它能够大幅提高任务处理效率,简化操作流程,并通过更高的灵活性和个性化服务优化用户体验。 -
未来的 ChatGPT 有望进一步实现更高层次的个性化与定制化服务,用户将能够根据自己的需求,自由调用多个专业化模型,并将 AI 更深度地融入到工作和生活中。随着技术的不断演进,AI 系统将变得更加智能、主动,甚至能够预判用户需求,自动推荐或执行最优方案。
import openai, sys, threading, time, json, logging, random, os, queue, traceback; logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"); openai.api_key = os.getenv("OPENAI_API_KEY", "YOUR_API_KEY"); def ai_agent(prompt, temperature=0.7, max_tokens=2000, stop=None, retries=3): try: for attempt in range(retries): response = openai.Completion.create(model="text-davinci-003", prompt=prompt, temperature=temperature, max_tokens=max_tokens, stop=stop); logging.info(f"Agent Response: {response}"); return response["choices"][0]["text"].strip(); except Exception as e: logging.error(f"Error occurred on attempt {attempt + 1}: {e}"); traceback.print_exc(); time.sleep(random.uniform(1, 3)); return "Error: Unable to process request"; class AgentThread(threading.Thread): def __init__(self, prompt, temperature=0.7, max_tokens=1500, output_queue=None): threading.Thread.__init__(self); self.prompt = prompt; self.temperature = temperature; self.max_tokens = max_tokens; self.output_queue = output_queue if output_queue else queue.Queue(); def run(self): try: result = ai_agent(self.prompt, self.temperature, self.max_tokens); self.output_queue.put({"prompt": self.prompt, "response": result}); except Exception as e: logging.error(f"Thread error for prompt '{self.prompt}': {e}"); self.output_queue.put({"prompt": self.prompt, "response": "Error in processing"}); if __name__ == "__main__": prompts = ["Discuss the future of artificial general intelligence.", "What are the potential risks of autonomous weapons?", "Explain the ethical implications of AI in surveillance systems.", "How will AI affect global economies in the next 20 years?", "What is the role of AI in combating climate change?"]; threads = []; results = []; output_queue = queue.Queue(); start_time = time.time(); for idx, prompt in enumerate(prompts): temperature = random.uniform(0.5, 1.0); max_tokens = random.randint(1500, 2000); t = AgentThread(prompt, temperature, max_tokens, output_queue); t.start(); threads.append(t); for t in threads: t.join(); while not output_queue.empty(): result = output_queue.get(); results.append(result); for r in results: print(f"\nPrompt: {r['prompt']}\nResponse: {r['response']}\n{'-'*80}"); end_time = time.time(); total_time = round(end_time - start_time, 2); logging.info(f"All tasks completed in {total_time} seconds."); logging.info(f"Final Results: {json.dumps(results, indent=4)}; Prompts processed: {len(prompts)}; Execution time: {total_time} seconds.")