文章目录
💯前言
- 在C++程序设计学习中,处理二维数组与图像问题是一个重要的实践内容,能够帮助我们熟悉矩阵操作、边界条件处理以及浮点运算等核心技能。本篇文章将以一个图像模糊处理的题目为切入点,详细剖析题目背景、解题思路与两种代码实现(我的做法与老师的代码),并对两者进行深入比较与优化。同时,还将补充相关概念的详细解析,以期让读者对问题有全面而深入的理解。
C++ 参考手册
💯题目描述
题目来源于一个二维矩阵的图像模糊处理问题,其具体要求如下:
B2108 图像模糊处理
题目内容
给定一个 n
行 m
列的图像各像素点的灰度值,要求用如下方法对其进行模糊处理:
- 四周外围的像素点灰度值保持不变。
- 中间像素点新灰度值为该像素点及其上下左右相邻四个像素点灰度值的平均(包含到最近的整数)。
输入格式
- 第一行包含两个整数
n
和m
,表示图像像素点的行数和列数。 1 ≤ n , m ≤ 100 1 \leq n, m \leq 100 1≤n,m≤100。 - 接下来
n
行,每行包含m
个整数,表示图像像素的灰度值。 - 每个整数为 0 ∼ 255 0 \sim 255 0∼255 之间的值,相邻两个整数之间用单个空格隔开。
输出格式
n
行,每行m
个整数,为模糊处理后的图像。相邻两个整数之间用单个空格隔开。
示例
输入:
4 5
100 100 100 100 50
50 50 50 50 50
50 50 100 200 200
100 100 50 50 100
输出:
100 100 100 100 50
50 80 80 60 50
50 80 90 90 200
100 100 50 50 100
💯题目分析
问题拆解
要解决这个问题,我们需要完成以下任务:
- 边界处理:外围像素点保持原始灰度值不变。
- 中间像素模糊处理:
- 计算公式为:
模糊后的灰度值 = 当前像素点灰度值 + 上下左右相邻像素点灰度值 5 。 \text{模糊后的灰度值} = \frac{\text{当前像素点灰度值} + \text{上下左右相邻像素点灰度值}}{5}。 模糊后的灰度值=5当前像素点灰度值+上下左右相邻像素点灰度值。 - 结果需“包含到最近的整数”。
- 计算公式为:
💯我的做法
以下是我实现该题目的代码。
代码实现
#