/*
假定有一个无限长的数轴,数轴上每个坐标上的数都是 0。
现在,我们首先进行 n 次操作,每次操作将某一位置 x 上的数加 c。
接下来,进行 m 次询问,每个询问包含两个整数 l 和 r,你需要求出在区间 [l,r] 之间的所有数的和。
输入格式
第一行包含两个整数 n 和 m。
接下来 n 行,每行包含两个整数 x 和 c。
再接下来 m 行,每行包含两个整数 l 和 r。
输出格式
共 m 行,每行输出一个询问中所求的区间内数字和。
数据范围
−10^9≤x≤10^9
1≤n,m≤10^5
−10^9≤l≤r≤10^9
−10000≤c≤10000
输入样例:
3 3
1 2
3 6
7 5
1 3
4 6
7 8
输出样例:
8
0
5
*/
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
// 用pair来存储要输入和输出的信息
typedef pair<int, int> PII;
const int N = 300010;
// n为要输入的个数,m为要输出的个数
int n, m;
// a[N]用来存储数值,s[N]用来存储前缀和
int a[N], s[N];
// alls用来统计总的不重复的个数
vector<int> alls;
vector<PII> add, query;
// 二分求出x对应的离散化的值
int find(int x) { // 找到第一个大于等于x的位置
int l = 0, r = alls.size() - 1;
while(l < r) {
int mid = (l + r) >> 1;
if(alls[mid] >= x) {
r = mid;
}else {
l = mid + 1;
}
}
return r + 1; //映射到1,2...n
}
vector<int>::iterator unique(vector<int>& a) {
int j = 0;
for(int i = 0; i < a.size(); i++) {
// 它是第一个或者和前面一个数不同
if(!i || a[i] != a[i - 1]) {
a[j++] = a[i];
}
}
// a[0] ~ a[j - 1] 存储a中重复的数
return a.begin() + j;
}
int main()
{
cin >> n >> m;
for(int i = 0; i < n; i++) {
int x, c;
cin >> x >> c;
add.push_back(make_pair(x, c));
alls.push_back(x);
}
for(int i = 0; i < m; i++) {
int l, r;
cin >> l >> r;
query.push_back(make_pair(l, r));
alls.push_back(l);
alls.push_back(r);
}
// 排序后去重
sort(alls.begin(), alls.end());
alls.erase(unique(alls.begin(), alls.end()), alls.end());
for(PII item: add) {
int x = find(item.first);
a[x] += item.second;
}
for(int i = 1; i <= alls.size(); i++) {
s[i] = s[i - 1] + a[i];
}
for(PII item: query) {
int l = find(item.first);
int r = find(item.second);
cout << s[r] - s[l - 1] << endl;
}
return 0;
}
C++离散化
于 2023-11-30 20:14:53 首次发布