(ODE)一阶隐式微分方程

作者在学习常微分方程的一阶隐式微分方程有感,写篇文章做一下笔记。(本人初学者,知识或许会出现纰漏,还望海涵/(ㄒoㄒ)/)学习视频指路:[梦言]一阶隐式微分方程
封面图

一、基本介绍

01 一般形式

其实很多人看教材的时候可能都看不懂(包括作者自己),不理解为什么教材要分成不显含 y y y和不显含 x x x的各种情况。其实对于一阶微分方程,可以知道其包含三个部分: x , y , d y d x x,y,\frac{dy}{dx} x,y,dxdy,因此微分方程的一般形式可以写成
F ( x , y , y ′ ) = 0 F(x,y,y')=0 F(x,y,y)=0

02 简化形式

为了研究微分方程的解,我们希望将这个形式简化(搞数学的人追求的至简美),从而能够对各种特殊情况简化求解过程。我们考虑三种特殊情况:

①该方程与 y ′ y' y无关
②该方程与 x x x无关
③该方程与 y y y无关

这里我们指的是狭义上的无关,不是真的完全没有关系(毕竟微分也和 x x x本身有关)

我们如何表示无关呢?对于一个一般方程 F ( a , b , c ) = 0 F(a,b,c)=0 F(a,b,c)=0,考虑其全微分 d F = ∂ F ∂ a d a + ∂ F ∂ b d b + ∂ F ∂ c d c = 0 dF=\frac{\partial F}{\partial a}da+\frac{\partial F}{\partial b}db+\frac{\partial F}{\partial c}dc=0 dF=aFda+bFdb+cFdc=0这也就是大多数教材令 y = p y=p y=p的原因所在,我们将 y ′ y' y看作第三个变量 p p p,即下式恒成立 d F = ∂ F ∂ x d x + ∂ F ∂ y d y + ∂ F ∂ p d p = 0 dF=\frac{\partial F}{\partial x}dx+\frac{\partial F}{\partial y}dy+\frac{\partial F}{\partial p}dp=0 dF=xFdx+yFdy+pFdp=0为了模拟方程和某个量(例如 p p p)无关的情况,设想我们对某个量进行轻微的扰动,也就是我们希望变化 d p dp dp的大小对整个方程毫无影响,意味着有下式恒成立
∂ F ∂ p = 0 \frac{\partial F}{\partial p}=0 pF=0这就意味着和量 p p p无关,不过上述表达实际上是使用了抽象函数的方式进行了一般化的推导。实际解决问题的时候,其实根本不用求偏导那么麻烦,往往可以一眼看出来方程和哪个量无关(肉眼可见……)

03 一些例子

x y ′ 3 = 1 + y ′ xy'^3=1+y' xy′3=1+y(与 y y y无关)
y = y ′ 2 e y ′ y=y'^2e^{y'} y=y′2ey(与 x x x无关)
y = 2 x y=2x y=2x(不含 y ′ y' y,其实也不能算微分方程了)

二、 解决方法

01 与 y ′ y' y无关

其实讨论这个没什么意义……都已经不是微分方程的范畴了,或者说这种形式已经是解了

02 与 x x x y y y无关

这也就是各个教材里面说的 ”不显含 x x x或不显含 y y y" 的形式

(1)可以解出 y ′ y' y的形式

直接使用学过的一阶线性微分方程的方法求解下列方程
d y d x = f ( x ) \frac{dy}{dx}=f(x) dxdy=f(x)或者 d y d x = f ( y ) \frac{dy}{dx}=f(y) dxdy=f(y)

(2)可以解出 x x x y y y的形式

F ( x , y ′ ) = 0 F(x,y')=0 F(x,y)=0或者 F ( y , y ′ ) = 0 F(y,y')=0 F(y,y)=0的形式,通常这种也可以写成解出 y ′ y' y的形式,如果不能的话可以使用03 完全体 F ( x , y , y ′ ) = 0 F(x,y,y')=0 F(x,y,y)=0中的求导解法。

(3)解不出 y ′ , x , y y',x,y y,x,y的形式

由于是二元函数,考虑使用参数方程。下面以 F ( y , y ′ ) = 0 F(y,y')=0 F(y,y)=0为例
观察该方程之后,将方程写成参数形式
{ y = φ 1 ( t ) d x d y = φ 2 ( t ) \begin{cases} y=\varphi_1(t)\\ \frac{dx}{dy}=\varphi_2(t) \end{cases} {y=φ1(t)dydx=φ2(t)对第二个式子进行积分得到 x = ∫ φ 2 ( t ) d y = ∫ φ 2 ( t ) φ 1 ′ ( t ) d t = ψ ( t ) x=\int \varphi_2(t)dy=\int\varphi_2(t)\varphi_1'(t)dt=\psi(t) x=φ2(t)dy=φ2(t)φ1(t)dt=ψ(t)我们的目的就是要得到 x , y x,y x,y关于 t t t的函数,最后把 t t t消去就可以得到 x , y x,y x,y之间的关系。即微分方程的解。

03 完全体 F ( x , y , y ′ ) = 0 F(x,y,y')=0 F(x,y,y)=0

如果说很遗憾,该方程与三个量都有关系,此时该如何求解呢?

(1)可以解出 y ′ y' y的方程

如果说这个完全体可以化成解出 y ′ y' y的形式,实际上就是 d y d x = f ( x , y ) \frac{dy}{dx}=f(x,y) dxdy=f(x,y)这种在常微分方程里非常常见,可以解的方式非常多,例如变量分离、变量替换法或者特殊方程(例如恰当方程)求解,在此不再赘述。

(2)可以解出 y y y或者 x x x的方程

如果方程可以化为形如 y = f ( x , y ′ ) y=f(x,y') y=f(x,y)或者 x = f ( y , y ′ ) x=f(y,y') x=f(y,y)称为可以解出 y y y x x x的方程,可以看出二者实际是对称的,而函数本质上就是两个变量之间的关系,我们实际上可以认为 x x x y y y谁作自变量,谁作因变量其实没有区别,因此两个方程解法是一样的。这里我们以 y = f ( x , y ′ ) y=f(x,y') y=f(x,y)为例:
p = y ′ p=y' p=y,对方程两边对自变量 x x x进行求导有
p = d y d x = ∂ f ∂ x + ∂ f ∂ p d p d x p=\frac{dy}{dx}=\frac{\partial f}{\partial x}+\frac{\partial f}{\partial p}\frac{dp}{dx} p=dxdy=xf+pfdxdp整理一下可以得到 d p d x = 1 ∂ f / ∂ p p − ∂ f / ∂ x ∂ f / ∂ p \frac{dp}{dx}=\frac{1}{\partial f/\partial p}p-\frac{\partial f/\partial x}{\partial f/\partial p} dxdp=f/p1pf/pf/x观察一下我们发现,这不就是可以解出 p ′ p' p的格式吗,可以用上面的方法解出来。得到 p = ψ ( x , c ) p=\psi(x,c) p=ψ(x,c)这就意味着我们可以得到 p p p x x x的关系式,也就是说,将该式子代入原方程中,我们就可以将三元方程消去变成二元方程! 这样以来我们就完成了简化,将方程变成了与某个量无关的形式。

(3)解不出 y ′ , x , y y',x,y y,x,y的形式

这好像还真没办法……作者的水平就到这了

三、总结

上面写的有点复杂,实际上教材只介绍了两种情况,一是可以解出 x , y x,y x,y的方程,利用求导方法来解决;二是不显含 x , y x,y x,y的方程,利用参数方程的方法来解决。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值