读书笔记:机器学习(第1~2章)

文章介绍了奥卡姆剃刀原则和没有免费的午餐定理在选择学习算法时的作用,强调了评估学习器泛化误差的重要性,探讨了留出法、交叉验证法和自助法等评估方法,并详细讲解了F1分数的宏观和微观计算以及ROC曲线的构建和含义。
摘要由CSDN通过智能技术生成

一、奥卡姆剃刀原则和没有免费的午餐定定理

  • 奥卡姆剃刀原则:若有多个假设与观察一致,则选择最简单的那个

  • 没有免费的午餐定理:无论学习算法多好还是多差,其期望性能是相同的

  • 注意1: 一个重要前提就是,所有“问题”出现的机会相同

  • 注意2: 本质上是说,脱离具体问题,空泛地谈论“什么学习算法更好”毫无意义

二、评估方法

评估学习器的泛化误差

  • 留出法:一般的划分方法

  • 交叉验证法: 为减小因样本划分不同而引入的差别,k折交叉验证通常要随机使用不同的划分重复p次,最终的评估结果是这p次k折交叉验证结果的均值

  • 自助法:给定包含m个样本的数据集D,每次随机从D中挑选一个样本,将其拷贝放入D',然后再将该样本放回初始数据集D中,这个过程重复执行m次后,就得到了包含m个样本的数据集D',可将D'用作训练集,D\D'用作测试集

三、各种F1

    • 常用的F1

    • F1的一般形式

,其中衡量了R对P的相对重要性,时退化为标准的F1,时R有更大影响,时P有更大影响

    • macro-F1

n个二分类混淆矩阵:先在各混淆矩阵上分别计算出P、R,再计算平均值

    • micro-F1

n个二分类混淆矩阵:先将各混淆矩阵的对应元素进行平均,得到TP、FP、TN、FN的平均值,再基于这些平均值计算

四、ROC曲线

  • 构造:把分类阈值设为最大,即把所有样例均预测为反例,在坐标(0,0)出标记一个点,然后将分类阈值依次设为每个样例的预测值,即依次将每个样例划分为正例

  • 注意:在非均等代价下,ROC曲线不能直接反映出学习器的期望总体代价

PS:本文大部分公式和图片都来自于周志华老师的《机器学习》,有理解不对的地方,欢迎指正

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值