字符串学习笔记

扩展kmp

z [ i ] z[i] z[i] 代表 i i i 之后的字符串与原先字符串的最长公共前缀

r r r 为目前 g e t get get 到的最大位置,l为对应的左端点

很明显的状态转移

比如现在枚举到了 i i i 这个位置

i i i [ l , r ] [l,r] [l,r] 的范围内,首先 S [ l , r ] = = S [ 1 , r − l + 1 ] S[l,r]==S[1,r-l+1] S[l,r]==S[1,rl+1]

于是 S [ i , r ] = = S [ i − l + 1 , r − l + 1 ] S[i,r]==S[i-l+1,r-l+1] S[i,r]==S[il+1,rl+1]

那么显然 z [ i ] = m i n ( z [ i − l + 1 ] , r − i + 1 ) z[i]=min(z[i-l+1],r-i+1) z[i]=min(z[il+1],ri+1) 不能超过长度

假设 z [ i − l + 1 ] + ( i − l + 1 ) − 1 = r − l + 1 z[i-l+1]+(i-l+1)-1=r-l+1 z[il+1]+(il+1)1=rl+1,也就是 z [ i ] + i − 1 = r z[i]+i-1=r z[i]+i1=r

但是 r + 1 r+1 r+1 处还可能匹配 因为 S r + 1 ≠ S r − l + 2 S_{r+1}\neq S_{r-l+2} Sr+1=Srl+2 但不一定不等于前缀的 S z [ i ] + 1 S_{z[i]+1} Sz[i]+1

然后暴力即可 由于 z [ i ] + + z[i]++ z[i]++ 的话一定会使r变大

所以是不断递增的 w h i l e while while 循环最多执行 n n n 次(执行 w h i l e while while 循环的前提是 z [ i ] + i − 1 = r z[i]+i-1=r z[i]+i1=r

注意 1 1 1 不能进入循环 否则一直 z [ i ] = z [ i ] z[i]=z[i] z[i]=z[i] 每个 i i i 都会执行 w h i l e while while 循环 使得算法失效

void getz()
{
    z[1]=n;
    int l=0,r=0;
    for(int i=2;i<=n;i++){
        if(i<=r)z[i]=min(z[i-l+1],r-i+1);
        while(i+z[i]<=n&&b[i+z[i]]==b[z[i]+1])z[i]++;
        if(i+z[i]-1>r)r=i+z[i]-1,l=i;
    }
}

AC自动机

f a i l [ i ] fail[i] fail[i] 代表 i i i 这个节点的失配指针,即最长公共后缀(不能是自己)

先建立 t r i e trie trie 树,然后 b f s bfs bfs 建立自动机,注意为了防止自己匹配自己,第一层 p u s h push push 进队列即可

void insert(int i){
	string x;
	cin>>x;
	s[i]=x;
	int now=0;
	for(auto j:x){
		if(!tr[now][j-'a'])
			tr[now][j-'a']=++cnt;
		now=tr[now][j-'a'];
	}
	mp[i]=now;
}
void build(){
	queue<int>q;
	for(int i=0;i<26;i++)if(tr[0][i])q.push(tr[0][i]);
	while(!q.empty()){
		int now=q.front();q.pop();
		for(int i=0;i<26;i++){
			if(tr[now][i]){
				fail[tr[now][i]]=tr[fail[now]][i];
				q.push(tr[now][i]);
			}
			else tr[now][i]=tr[fail[now]][i];
		}
	}
}

回文自动机

由于以 s [ i ] s[i] s[i] 结尾的回文串必定是由以 s [ i − 1 ] s[i-1] s[i1] 结尾的回文串转移过来

所以建立回文树

g e t f a i l ( x , i ) getfail(x,i) getfail(x,i) 代表找上一位在回文树中下标为 x x x,并且开头前一个与 s [ i ] s[i] s[i] 相等 的下标

即最长回文后缀

为什么点要插在最长回文后缀的后面 :

​ 因为如果不是最长回文后缀 那么一定出现过 回文串中回文串的性质

0根代表偶数回文 1根代表奇数回文

l e n [ 1 ] = − 1 → len[1]=-1 \rightarrow len[1]=1 保证每次+=2结果正确性

f a i l fail fail 指针的求解:

由于最长回文后缀不能是自己 所以应用 f a i l [ p o s ] fail[pos] fail[pos] 求解 而不是 p o s pos pos(因为会直接返回 p o s pos pos 导致 r e t u r n return return 本身),直接根据 g e t f a i l getfail getfail 函数转移即可

时间复杂度证明:

由于每次插入点都会使得深度 + 1 +1 +1,深度最多加 n n n 次,则 w h i l e while while 循环最多执行 n n n

ps:第二个有点问题,但是时间复杂度理论是正确的,不会证明

int getfail(int x,int i){
    while(s[i-len[x]-1]!=s[i])x=fail[x];
    return x;
}
void solve()
{
    string s;
    cin>>s;
    int n=s.size(),pre=0;
    s=" "+s;
    len[1]=-1,fail[0]=1;
    for(int i=1;i<=n;i++){
        int pos=getfail(pre,i);
        if(!tr[pos][s[i]-'a']){
            fail[++tot]=tr[getfail(fail[pos],i)][s[i]-'a'];
            tr[pos][s[i]-'a']=tot;
            len[tot]=len[pos]+2;
            cnt[tot]=cnt[fail[tot]]+1;
        }
        pre=tr[pos][s[i]-'a'];
    }
}
h a l f [ i ] half[i] half[i] 表示以 i i i 结尾的最长回文后缀 且 长度小于等于 l e n [ i ] / 2 len[i]/2 len[i]/2
for(int i=1;i<=n;i++){
    int pos=getfail(pre,i);
    if(!tr[pos][s[i]-'a']){
        fail[++tot]=tr[getfail(fail[pos],i)][s[i]-'a'];
        tr[pos][s[i]-'a']=tot;
        len[tot]=len[pos]+2;
        if(len[tot]<=2)half[tot]=fail[tot];
        else {
        	int tmp=half[pos];
            while(s[i-1-len[tmp]]!=s[i]||2*len[tmp]+4>len[tot]){
                tmp=fail[tmp];
            }
            half[tot]=tr[tmp][s[i]-'a'];
        }
    }
    pre=tr[pos][s[i]-'a'];
}

后缀数组

具体详见代码

void get_sa(){
    int m=130;//m是桶最大编号
    vector<int>sa(n+1,0),sa2(2*n+1,0),rk(2*n+1,0),c(max(n,m)+1,0);
    /*
        sa[i]代表排名第i的后缀的起始编号
        sa2[i]代表第二关键字排序后排名第i的后缀起始编号
        rk[i]代表以i为起始后缀的排名
        c[i]即为桶 用来存第一关键字的个数
    */
    for(int i=1;i<=n;i++)c[rk[i]=s[i]]++;
    //一开始第一关键字为s[i] 存进桶即可
    for(int i=1;i<=m;i++)c[i]+=c[i-1];
    //做前缀和 这样即可求出每个第一关键字的最大排名
    for(int i=n;i>=1;i--)sa[c[rk[i]]--]=i;
    //按照第一关键字排序
    for(int k=1;k<=n;k<<=1){
        int num=0;
        for(int i=n-k+1;i<=n;i++)sa2[++num]=i;
        //由于n-k+1~n的无第二关键字 所以排名最靠前
        for(int i=1;i<=n;i++)if(sa[i]>k)sa2[++num]=sa[i]-k;
        //按照sa[i]从小到大遍历 保证排名从前往后
        //如果sa[i]>k 说明这个可以当作第二关键字 则存入sa2中
        for(int i=1;i<=m;i++)c[i]=0;
        //初始化桶
        for(int i=1;i<=n;i++)c[rk[i]]++;
        for(int i=1;i<=m;i++)c[i]+=c[i-1];
        //存第一关键字并做前缀和
        for(int i=n;i>=1;i--)sa[c[rk[sa2[i]]]--]=sa2[i];
        //倒着遍历保证排序从后往前
        //rk[sa2[i]]是第二关键字排名为i的后缀的第一关键字
        //就可以像上面那样 由于桶前缀和已经对第一关键字排序
        //所以实质上就是倒着遍历 每个第一关键字不影响 都在一个区间内
        //然后倒着排序第二关键字
        swap(rk,sa2);//下面要更新rk数组,所以做个临时交换
        rk[sa[1]]=1;//显然排名为1的后缀的rk是1
        num=1;
        for(int i=2;i<=n;i++){
            rk[sa[i]]=(sa2[sa[i]]==sa2[sa[i-1]]&&sa2[sa[i]+k]==sa2[sa[i-1]+k])?num:++num;
            //如果第一关键字和第二关键字和上一个均相同,则排名一样,num无需++
        }
        if(num==n)break;
        //num==n说明所有后缀排序均不相同,排序结束
        m=num;//更新容器最大值
    }
    for(int i=1;i<=n;i++)cout<<sa[i]<<' ';
}

height数组的求解

void get_height(){
    //height[i]代表LCP(sa[i],sa[i-1])
    height[1]=0;
    int k=0;
    //k代表现在匹配到的长度
    for(int i=1;i<=n;i++){
      	//按后缀进行遍历 很容易知道height[rk[i]]>=height[rk[i-1]]-1
        int j=sa[rk[i]-1];//上一个排名的后缀起始下标
        if(k)k--;//-1是因为第一个字符失去
        while(s[i+k]==s[j+k])k++;//暴力匹配 k最大是n 总时间复杂度最大为O(n)
        height[rk[i]]=k;//k即为最长公共前缀
    }
}

后缀数组模板

struct SA{
    vector<int>sa,sa2,c,rk,height;
    vector<vector<int>>dp;
    void init(string s,int n){
        int m=150;
        sa=vector<int>(max(n,m)+1,0);
        c=height=sa;
        sa2=rk=vector<int>(n*2+1,0);
        //可能re的点
        dp=vector<vector<int>>(n+1,vector<int>(31,1e9+10));
        for(int i=1;i<=n;i++)c[rk[i]=s[i]]++;
        for(int i=1;i<=m;i++)c[i]+=c[i-1];
        for(int i=n;i>=1;i--)sa[c[rk[i]]--]=i;
        for(int k=1;k<=n;k<<=1){
            int num=0;
            for(int i=n-k+1;i<=n;i++)sa2[++num]=i;
            for(int i=1;i<=n;i++)if(sa[i]>k)sa2[++num]=sa[i]-k;
            for(int i=1;i<=m;i++)c[i]=0;
            for(int i=1;i<=n;i++)c[rk[i]]++;
            for(int i=1;i<=m;i++)c[i]+=c[i-1];
            for(int i=n;i>=1;i--)sa[c[rk[sa2[i]]]--]=sa2[i];
            num=1;swap(rk,sa2);
            rk[sa[1]]=1;
            for(int i=2;i<=n;i++){
                rk[sa[i]]=(sa2[sa[i]]==sa2[sa[i-1]]&&sa2[sa[i]+k]==sa2[sa[i-1]+k])?num:++num;
            }
            m=num;
            if(m==n)break;
        }
        int k=0;
        for(int i=1;i<=n;i++){
            int j=sa[rk[i]-1];
            if(k)k--;
            while(max(i,j)+k<=n&&s[i+k]==s[j+k])k++;
            height[rk[i]]=k;
        }
        for(int i=1;i<=n;i++)dp[i][0]=height[i];
        for(int j=1;(1<<j)<=n;j++){
            for(int i=1;i+(1<<j)-1<=n;i++){
                dp[i][j]=min(dp[i][j-1],dp[i+(1<<j-1)][j-1]);
            }
        }
    }
    int lca(int l,int r){
        l=rk[l],r=rk[r];
        if(l>r)swap(l,r);
        l++;
        int len=lg[r-l+1];
        return min(dp[l][len],dp[r-(1<<len)+1][len]);
    }
};

后缀自动机模板

struct sam{
    vector<vector<int>>tr;
    vector<int>len,fa;
    int tot=1,now=0,lst=1;
    void init(int n){
        tr=vector<vector<int>>(n*2+10,vector<int>(30,0));
        len=vector<int>(n*2+10,0);
        fa=len;
    }
    void insert(char c){
        c-='a';
        now=++tot;
        len[now]=len[lst]+1;
        while(!tr[lst][c]&&lst){
            tr[lst][c]=now;
            lst=fa[lst];
        }
        if(lst==0)fa[now]=1;
        else {
            int x=tr[lst][c];
            if(len[x]==len[lst]+1){
                fa[now]=x;
            }
            else {
                int y=++tot;
                tr[y]=tr[x];
                fa[y]=fa[x];
                len[y]=len[lst]+1;
                fa[x]=fa[now]=y;
                while(tr[lst][c]==x&&lst){
                    tr[lst][c]=y;
                    lst=fa[lst];
                }
            }
        }
        lst=now;
        cnt[now]=1;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值