2023集 数据结构1 P3372 【模板】线段树 1

【模板】线段树 1

题目描述

如题,已知一个数列,你需要进行下面两种操作:

  1. 将某区间每一个数加上 k k k
  2. 求出某区间每一个数的和。

输入格式

第一行包含两个整数 n , m n, m n,m,分别表示该数列数字的个数和操作的总个数。

第二行包含 n n n 个用空格分隔的整数,其中第 i i i 个数字表示数列第 i i i 项的初始值。

接下来 m m m 行每行包含 3 3 3 4 4 4 个整数,表示一个操作,具体如下:

  1. 1 x y k:将区间 [ x , y ] [x, y] [x,y] 内每个数加上 k k k
  2. 2 x y:输出区间 [ x , y ] [x, y] [x,y] 内每个数的和。

输出格式

输出包含若干行整数,即为所有操作 2 的结果。

样例 #1

样例输入 #1

5 5
1 5 4 2 3
2 2 4
1 2 3 2
2 3 4
1 1 5 1
2 1 4

样例输出 #1

11
8
20

提示

对于 30 % 30\% 30% 的数据: n ≤ 8 n \le 8 n8 m ≤ 10 m \le 10 m10
对于 70 % 70\% 70% 的数据: n ≤ 10 3 n \le {10}^3 n103 m ≤ 10 4 m \le {10}^4 m104
对于 100 % 100\% 100% 的数据: 1 ≤ n , m ≤ 10 5 1 \le n, m \le {10}^5 1n,m105

保证任意时刻数列中所有元素的绝对值之和 ≤ 10 18 \le {10}^{18} 1018

【样例解释】

完整代码

#include<bits/stdc++.h>
using namespace std;
int n,m;
#define int long long
const int M=1e5+5;
long long sm[M<<2],tag[M<<2],a[M];
#define lc ((x)<<1)//2*x
#define rc ((x)<<1|1)//2*x+1
inline void build(int x,int l,int r)
{
	if(l==r)
	{
		sm[x]=a[l];	
		return;
	} 
	int mid=(l+r)>>1;
	build(lc,l,mid);build(rc,mid+1,r);
	sm[x]=sm[lc]+sm[rc];
}//建树
inline void cover(int x,int l,int r,long long d){
	sm[x]+=(r-l+1)*d;//对这个线段的长度进行区间加
	tag[x]+=d;
}//对一部分的点进行覆盖
inline void pushdown(int x,int l,int r)
{
	if(tag[x])
	{
		int mid=(l+r)>>1;
		cover(lc,l,mid,tag[x]);
		cover(rc,mid+1,r,tag[x]);
		tag[x]=0;
	}
}//tag数组用来记录应该加多少,让左右两边的子节点继承
inline void modify(int x,int l,int r,int L,int R,long long d)
{
	if(l==L&&r==R)	
		return cover(x,l,r,d);
	int mid=(l+r)>>1;pushdown(x,l,r);/*?*/
	if(R<=mid)modify(lc,l,mid,L,R,d);
	else if(L>mid)modify(rc,mid+1,r,L,R,d);
	else
	{
		modify(lc,l,mid,L,mid,d);
		modify(rc,mid+1,r,mid+1,R,d);
	}
	sm[x]=sm[lc]+sm[rc];
}//区间加
inline long long query(int x,int l,int r,int L,int R)
{
	if(l==L&&r==R)return sm[x];
	int mid=(l+r)>>1;
	pushdown(x,l,r);
	if(R<=mid)return query(lc,l,mid,L,R);
	else if(L>mid)return query(rc,mid+1,r,L,R);
	else
	{
		return query(lc,l,mid,L,mid)+query(rc,mid+1,r,mid+1,R);
	}
}//区间查询
signed main()
{
	cin>>n>>m;
	for(int i=1;i<=n;i++)
		cin>>a[i];
	build(1,1,n);
	for(int i=1;i<=m;i++)
	{
		int o,x,y,k;
		cin>>o;
		if(o==1)
		{
			cin>>x>>y>>k;
			modify(1,1,n,x,y,k);
		}
		if(o==2)
		{
			cin>>x>>y;
			cout<<query(1,1,n,x,y)<<endl;
		}
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值