【模板】线段树 1
题目描述
如题,已知一个数列,你需要进行下面两种操作:
- 将某区间每一个数加上 k k k。
- 求出某区间每一个数的和。
输入格式
第一行包含两个整数 n , m n, m n,m,分别表示该数列数字的个数和操作的总个数。
第二行包含 n n n 个用空格分隔的整数,其中第 i i i 个数字表示数列第 i i i 项的初始值。
接下来 m m m 行每行包含 3 3 3 或 4 4 4 个整数,表示一个操作,具体如下:
1 x y k
:将区间 [ x , y ] [x, y] [x,y] 内每个数加上 k k k。2 x y
:输出区间 [ x , y ] [x, y] [x,y] 内每个数的和。
输出格式
输出包含若干行整数,即为所有操作 2 的结果。
样例 #1
样例输入 #1
5 5
1 5 4 2 3
2 2 4
1 2 3 2
2 3 4
1 1 5 1
2 1 4
样例输出 #1
11
8
20
提示
对于
30
%
30\%
30% 的数据:
n
≤
8
n \le 8
n≤8,
m
≤
10
m \le 10
m≤10。
对于
70
%
70\%
70% 的数据:
n
≤
10
3
n \le {10}^3
n≤103,
m
≤
10
4
m \le {10}^4
m≤104。
对于
100
%
100\%
100% 的数据:
1
≤
n
,
m
≤
10
5
1 \le n, m \le {10}^5
1≤n,m≤105。
保证任意时刻数列中所有元素的绝对值之和 ≤ 10 18 \le {10}^{18} ≤1018。
【样例解释】
完整代码
#include<bits/stdc++.h>
using namespace std;
int n,m;
#define int long long
const int M=1e5+5;
long long sm[M<<2],tag[M<<2],a[M];
#define lc ((x)<<1)//2*x
#define rc ((x)<<1|1)//2*x+1
inline void build(int x,int l,int r)
{
if(l==r)
{
sm[x]=a[l];
return;
}
int mid=(l+r)>>1;
build(lc,l,mid);build(rc,mid+1,r);
sm[x]=sm[lc]+sm[rc];
}//建树
inline void cover(int x,int l,int r,long long d){
sm[x]+=(r-l+1)*d;//对这个线段的长度进行区间加
tag[x]+=d;
}//对一部分的点进行覆盖
inline void pushdown(int x,int l,int r)
{
if(tag[x])
{
int mid=(l+r)>>1;
cover(lc,l,mid,tag[x]);
cover(rc,mid+1,r,tag[x]);
tag[x]=0;
}
}//tag数组用来记录应该加多少,让左右两边的子节点继承
inline void modify(int x,int l,int r,int L,int R,long long d)
{
if(l==L&&r==R)
return cover(x,l,r,d);
int mid=(l+r)>>1;pushdown(x,l,r);/*?*/
if(R<=mid)modify(lc,l,mid,L,R,d);
else if(L>mid)modify(rc,mid+1,r,L,R,d);
else
{
modify(lc,l,mid,L,mid,d);
modify(rc,mid+1,r,mid+1,R,d);
}
sm[x]=sm[lc]+sm[rc];
}//区间加
inline long long query(int x,int l,int r,int L,int R)
{
if(l==L&&r==R)return sm[x];
int mid=(l+r)>>1;
pushdown(x,l,r);
if(R<=mid)return query(lc,l,mid,L,R);
else if(L>mid)return query(rc,mid+1,r,L,R);
else
{
return query(lc,l,mid,L,mid)+query(rc,mid+1,r,mid+1,R);
}
}//区间查询
signed main()
{
cin>>n>>m;
for(int i=1;i<=n;i++)
cin>>a[i];
build(1,1,n);
for(int i=1;i<=m;i++)
{
int o,x,y,k;
cin>>o;
if(o==1)
{
cin>>x>>y>>k;
modify(1,1,n,x,y,k);
}
if(o==2)
{
cin>>x>>y;
cout<<query(1,1,n,x,y)<<endl;
}
}
return 0;
}