以问题为导向剖析一些矩阵等价类的本质(相似篇)

C^{-1}AC=B    

称为A与B相似。

矩阵的相似概念起源于求矩阵A^{m}的问题

乍看相当复杂,无从下手,则考虑把矩阵这个复杂的系统进行剖析,若有A=P^{-1}DP(其中D为对角矩阵),那么A^{m}=P^{-1}D^{m}P,简便得多了。

当我们通过标准的方法求得eigenvalues和linearly independent eigenvectors后(如果有n个LIE),则可以将A对角化

可以粗浅认为,将A对角化的本质是将A的绝对大小(姑且这么称,并不等于但可以反映行列式大小,实际上两者只相差乘以一个|P|^{2})与维度(也姑且这么称)分开的过程

绝对大小为|D|,维度体现为P中的eigenvectors

当A乘方,其绝对大小跟着乘方,然而其维度并没有发生改变

当A不变,其绝对大小不会变,但其eigenvectors可以变化,即P可变,然而基础解系之上的不同线性组合,因此其维度也并没有变

 在A可对角化的条件下将其对角化之后,其内部结构仿佛裸露在面前。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值