【线性代数】【第五章】特征值与特征向量习题

一. 基本内容与重要结论

1. 基础知识

特征值与特征向量

在这里插入图片描述

 
特征方程

在这里插入图片描述
 

  1. 求特征方程的行列式=0(=0意味着有解),得λ,即特征值。
  2. 由各个λ,求各个特征值的基础解系。

在这里插入图片描述

 

相似的定义

在这里插入图片描述
与对角矩阵相似,则可对角化

 

2. 重要定理

特征值的特征向量的组合

  • 相同特征值的特征向量的组合,也属于此特征值的特征向量
  • 不同特征值的特征向量组合,不是特征向量
    在这里插入图片描述

 
特征值与对角线元素的关系、特征值与行列式的关系

在这里插入图片描述

 

2.1.特征值与线性相关性

不同特征值之间的特征向量线性无关

在这里插入图片描述

 
特征值的重数与属于它的特征向量的线性无关的个数。

在这里插入图片描述

 

2.2. 相似与对角化

在这里插入图片描述

 
特征值与对角化

在这里插入图片描述

 

在这里插入图片描述

 
相似对角化的充要条件

在这里插入图片描述

 

2.3. 对称矩阵与正交

在这里插入图片描述

 

在这里插入图片描述
 

变换与理解

在这里插入图片描述
与对角相似,则有三个线性无关的特征向量。
 

二. 典型例题

1. 特征值与特征向量

题型一: 数字型矩阵

在这里插入图片描述

  1. 求| λE- A | = 0 ,得特征值
  2. 求各个特征值的通解,基础解系的自由变量=1?(也可以设为0,或其他数)

 

在这里插入图片描述

在这里插入图片描述

 

在这里插入图片描述

在这里插入图片描述

 
在这里插入图片描述

在这里插入图片描述

 
本题型主要注意

不用化成最简式,化成行阶梯矩阵就可以。对于基础解系:自由变量取值比较随机,保证容易计算即可。

 

在这里插入图片描述

1.直接计算

 

题型二:抽象矩阵

1. 特征值随矩阵的加、平方、逆的变换

在这里插入图片描述

  • A+kE的特征值:λ+k,特征向量是a
  • A²的特征值:λ²,特征向量是a
  • A − 1 A^{-1} A1 的特征值是1/λ,特征向量是a

 

根据非齐次方程组的解得出特征等式的形式

在这里插入图片描述

  1. 找特征等式形式:
  • 由解的性质,得非齐次特解,带入非齐次方程,得特征等式形式
  • 齐次基础解系,带入齐次等式,得特质等式
  1. 由特征定义得特征值和特征向量。

 

题型三:相似矩阵的特征值,特征向量

在这里插入图片描述

解题思路:由已知式子出发,根据特征等式求

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

roman_日积跬步-终至千里

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值