文章目录
一. 基本内容与重要结论
1. 基础知识
特征值与特征向量
特征方程
- 求特征方程的行列式=0(=0意味着有解),得λ,即特征值。
- 由各个λ,求各个特征值的基础解系。
相似的定义
与对角矩阵相似,则可对角化
2. 重要定理
特征值的特征向量的组合
- 相同特征值的特征向量的组合,也属于此特征值的特征向量
- 不同特征值的特征向量组合,不是特征向量
特征值与对角线元素的关系、特征值与行列式的关系
2.1.特征值与线性相关性
不同特征值之间的特征向量线性无关
特征值的重数与属于它的特征向量的线性无关的个数。
2.2. 相似与对角化
特征值与对角化
相似对角化的充要条件
2.3. 对称矩阵与正交
变换与理解
与对角相似,则有三个线性无关的特征向量。
二. 典型例题
1. 特征值与特征向量
题型一: 数字型矩阵
- 求| λE- A | = 0 ,得特征值
- 求各个特征值的通解,基础解系的自由变量=1?(也可以设为0,或其他数)
本题型主要注意
不用化成最简式,化成行阶梯矩阵就可以。对于基础解系:自由变量取值比较随机,保证容易计算即可。
1.直接计算
题型二:抽象矩阵
1. 特征值随矩阵的加、平方、逆的变换
- A+kE的特征值:λ+k,特征向量是a
- A²的特征值:λ²,特征向量是a
- A − 1 A^{-1} A−1 的特征值是1/λ,特征向量是a
根据非齐次方程组的解得出特征等式的形式
- 找特征等式形式:
- 由解的性质,得非齐次特解,带入非齐次方程,得特征等式形式
- 齐次基础解系,带入齐次等式,得特质等式
- 由特征定义得特征值和特征向量。
题型三:相似矩阵的特征值,特征向量
解题思路:由已知式子出发,根据特征等式求