深度学习图片识别

本文详细介绍了如何使用YOLov4算法对自定义数据集进行目标检测,包括数据标注、划分、预处理,模型训练、验证、保存,以及测试和结果展示。
摘要由CSDN通过智能技术生成

摘要:
本文将介绍如何使用yolov4算法,结合自己的标注数据集进行目标检测模型的训练,并通过测试图片展示检测结果。我们将从数据准备、模型训练、评估到测试展示,一步步完成整个过程。

一、引言

目标检测是计算机视觉领域的一个重要任务,旨在从图像中识别出感兴趣的目标并给出其位置信息。yolo(You Only Look Once)系列算法以其高速度和准确性在目标检测领域取得了显著成果。本文将基于YOLOv4算法,使用自己标注的数据集进行训练,并展示如何使用训练好的模型对测试图片进行检测。

二、数据集准备

1.数据标注

l利用爬虫软件下载图片,使用LabelImg,对图片进行目标标注。为每个目标绘制矩形框,并标注其类别。标注完成后,将生成与图片对应的.xml格式标注文件,其中包含目标的位置和类别信息。

2.数据集划分

将标注好的数据划分为训练集、验证集和测试集。通常,可以按照7:2:1的比例进行划分,确保每个集合中的目标分布相对均匀。

3.数据预处理

根据yolov4的要求,对图片进行统一尺寸调整和归一化处理。同时,将标注文件中的坐标值转换为相对于图片尺寸的归一化坐标。

三、模型训练

利用老师课堂上提供的代码,修改一部分将自己的模型运行起来。

四、模型评估与保存

1.验证集评估

根据验证集上的性能指标,评估模型的性能。如果达到满意的效果,可以停止训练并保存当前权重文件。

2.模型保存

将训练好的模型权重文件保存到指定路径,以便后续使用。

五、测试与结果展示

1.加载模型

使用保存的模型权重文件加载yolov4模型。

2.测试图片检测

选择一张测试图片,对其进行前向传播,获取检测结果。

六、结论

通过本次的模型测试,您应该已经了解了如何使用yolov4算法进行自定义数据集的目标检测训练与测试。从数据准备到模型训练、评估再到测试展示,整个过程涵盖了目标检测的基本流程。希望本文能对您有所帮助,并激发您进一步探索目标检测领域的兴趣。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值