摘要:
本文将介绍如何使用yolov4算法,结合自己的标注数据集进行目标检测模型的训练,并通过测试图片展示检测结果。我们将从数据准备、模型训练、评估到测试展示,一步步完成整个过程。
一、引言
目标检测是计算机视觉领域的一个重要任务,旨在从图像中识别出感兴趣的目标并给出其位置信息。yolo(You Only Look Once)系列算法以其高速度和准确性在目标检测领域取得了显著成果。本文将基于YOLOv4算法,使用自己标注的数据集进行训练,并展示如何使用训练好的模型对测试图片进行检测。
二、数据集准备
1.数据标注
l利用爬虫软件下载图片,使用LabelImg,对图片进行目标标注。为每个目标绘制矩形框,并标注其类别。标注完成后,将生成与图片对应的.xml
格式标注文件,其中包含目标的位置和类别信息。
2.数据集划分
将标注好的数据划分为训练集、验证集和测试集。通常,可以按照7:2:1的比例进行划分,确保每个集合中的目标分布相对均匀。
3.数据预处理
根据yolov4的要求,对图片进行统一尺寸调整和归一化处理。同时,将标注文件中的坐标值转换为相对于图片尺寸的归一化坐标。
三、模型训练
利用老师课堂上提供的代码,修改一部分将自己的模型运行起来。
四、模型评估与保存
1.验证集评估
根据验证集上的性能指标,评估模型的性能。如果达到满意的效果,可以停止训练并保存当前权重文件。
2.模型保存
将训练好的模型权重文件保存到指定路径,以便后续使用。
五、测试与结果展示
1.加载模型
使用保存的模型权重文件加载yolov4模型。
2.测试图片检测
选择一张测试图片,对其进行前向传播,获取检测结果。
六、结论
通过本次的模型测试,您应该已经了解了如何使用yolov4算法进行自定义数据集的目标检测训练与测试。从数据准备到模型训练、评估再到测试展示,整个过程涵盖了目标检测的基本流程。希望本文能对您有所帮助,并激发您进一步探索目标检测领域的兴趣。