Datawhale夏令营机器学习

#ai夏令营#Datawhale

任务实现思路

一、数据准备

  1. 理解数据

    • 仔细阅读数据字段的定义和含义,确保对每个字段有清晰的理解。
    • 根据理解,确定哪些字段是输入特征,哪些字段用来预测目标(即Label)。
  2. 数据清洗

    • 检查数据的完整性,填补或删除缺失值。
    • 处理异常值和重复数据。
    • 确保数据的一致性和正确性,特别是与预测目标直接相关的字段如DC50和Dmax。
  3. 数据增强

    • 如果数据集较小,可以采用数据增强的方法来扩展数据集。
    • 使用化学信息学数据库或文献等外部数据源,获取更多相关数据,并结合现有数据进行补充。
  4. 特征工程

    • 数值特征处理:如标准化或归一化处理DC50、Dmax等数值特征。
    • 分类特征编码:对字符串类型的特征,如Uniprot、Target等,进行编码处理。
    • 复杂特征处理:对于Smiles等复杂分子结构特征,可以考虑使用分子指纹(molecular fingerprint)或其他分子表示方法转化为数值特征。
  5. 数据划分

    • 将数据集分为训练集、验证集和测试集。例如:70%用于训练,20%用于验证,10%用于测试。
    • 确保划分后的数据集能够代表整个数据集的分布情况。

二、模型构建

  1. 选择算法

    • 根据任务特点选择适合的机器学习算法,如逻辑回归、支持向量机(SVM)、随机森林、XGBoost等。
    • 对于更复杂的数据和模型需求,可以考虑深度学习模型,如卷积神经网络(CNN)处理分子结构数据,或循环神经网络(RNN)处理序列数据。
  2. 模型训练

    • 使用训练集训练模型,调整模型参数以提高模型性能。
    • 利用交叉验证(cross-validation)确保模型在不同数据子集上的性能一致。
  3. 模型评估

    • 在验证集上评估模型性能,使用准确率、精确率、召回率和F1分数等指标进行综合评价。
    • 根据验证结果调整模型参数,进行模型优化。

三、模型优化与调优

  1. 超参数调优

    • 使用网格搜索(Grid Search)或随机搜索(Random Search)等方法,寻找最佳模型超参数组合。
    • 利用交叉验证,确保调优过程中的模型稳定性和泛化能力。
  2. 特征选择

    • 通过特征重要性分析或前向选择、后向消除等方法,选择对预测任务最重要的特征,提高模型性能和训练效率。
  3. 集成学习

    • 采用集成学习方法,如袋装(Bagging)、提升(Boosting)等,组合多个基模型以获得更强的预测能力。

四、模型最终测试与验证

  1. 在测试集上评估模型

    • 使用留出的测试集评估最终模型的性能,确保模型没有过拟合,能够泛化到未见过的数据。
  2. 验证结果解释

    • 分析模型的预测结果,理解错误预测的原因和模型的局限性。
    • 与领域专家讨论模型结果,确保结果在实际科研和应用中具有可解释性和实用性。

五、数据搜索与扩充(可选)

  1. 收集外部数据

    • 使用PubChem、ChEMBL、Uniprot等外部化学和生物数据库,搜集更多与PROTACs相关的数据。
    • 通过API或爬虫等技术手段,自动化数据收集过程。
  2. 数据处理与融合

    • 清洗和处理收集到的额外数据,确保格式和当前数据集一致。
    • 将外部数据与现有数据进行融合,扩大数据量,提高模型泛化能力。

具体实施步骤

  1. 数据加载和预处理:

    • 读取并清洗数据,处理缺失值和异常值。
    • 进行特征工程和数据标准化。
  2. 构建和训练模型:

    • 选用多种模型进行训练(如逻辑回归、随机森林等)。
    • 采用交叉验证和超参数调优,优化模型性能。
  3. 模型评估和验证:

    • 在验证集上评估模型,调整模型参数。
    • 在测试集上验证最终模型,确保其泛化能力。
  4. 数据扩充和增强:

    • 搜集外部数据,进行清洗和处理。
    • 将外部数据与现有数据融合,优化模型训练数据集。
  5. 最终报告和总结:

    • 总结方法和结果,提出改进建议。
    • 撰写详细报告,展示模型性能和预测效果。

数据清洗步骤

一、数据理解和初探

  1. 初步检查
    • 查看数据集的规模和字段类型,包括数值型、分类型和文本型等。
    • 使用统计描述(如均值、中位数、标准差等)和可视化方法(如直方图、箱线图等)来初步了解数据的分布和特征。

二、处理缺失值

  1. 识别缺失值

    • 检查每个字段中是否存在缺失值,使用库如Pandas的isnull()isna()方法。
    • 可视化缺失值分布,如使用缺失值矩阵图(Missingno库)或热图(Seaborn库)。
  2. 处理策略

    • 删除缺失值:如果缺失值比较少,可以直接删除含缺失值的数据行。
    • 填充缺失值:对于数值型数据,可以使用均值、中位数、众数或插值法填充缺失值。
    • 对于分类型数据,可以使用最常见的类别进行填充。
    • 对于时间序列数据,可以使用前后数据的均值进行插值。
     data.dropna(inplace=True)
     data['column_name'].fillna(data['column_name'].mean(), inplace=True)
     data['category_column'].fillna(data['category_column'].mode()[0], inplace=True)
     data['time_series_column'].interpolate(method='linear', inplace=True)
三、处理异常值

  1. 识别异常值
    • 使用统计方法(如IQR,箱线图)和可视化技术(如散点图、箱线图)来识别异常值。
     Q1 = data['column_name'].quantile(0.25)
     Q3 = data['column_name'].quantile(0.75)
     IQR = Q3 - Q1
     lower_bound = Q1 - 1.5 * IQR
     upper_bound = Q3 + 1.5 * IQR
     outliers = data[(data['column_name'] < lower_bound) | (data
  1. 处理策略
    • 删除异常值:直接删除异常值所在的行。
     data = data[(data['column_name'] >= lower_bound) & (data['column_name'] <= upper_bound)]

  • 替换异常值:用其他合理值替换,如上下限值或其他统计值。
     data['column_name'] = np.where(data['column_name'] < lower_bound, lower_bound, data['column_name'])
     data['column_name'] = np.where(data['column_name'] > upper_bound, upper_bound, data['column_name'])

四、处理重复数据
  1. 识别重复数据
    • 检查整个数据集或指定字段组合中是否存在重复记录。
     duplicates = data[data.duplicated()]
  1. 删除重复数据
    • 删除完全重复的行。
     data.drop_duplicates(inplace=True)

五、数据标准化和归一化

  1. 标准化(Standardization)
    • 将数据转换为标准正态分布,消除不同特征量纲的影响。
     from sklearn.preprocessing import StandardScaler
     scaler = StandardScaler()
     data[['numeric_column1', 'numeric_column2']] = scaler.fit_transform(data[['numeric_column1', 'numeric_column2']])

  1. 归一化(Normalization)
    • 将数据缩放到固定范围(如0到1),尤其适用于距离度量的算法。
     from sklearn.preprocessing import MinMaxScaler
     scaler = MinMaxScaler()
     data[['numeric_column1', 'numeric_column2']] = scaler.fit_transform(data[['numeric_column1', 'numeric_column2']])

六、处理分类特征

  1. 编码分类变量
    • 标签编码(Label Encoding):将分类转换为数值,对于有序变量效果较好。
     from sklearn.preprocessing import LabelEncoder
     le = LabelEncoder()
     data['category_column'] = le.fit_transform(data['category_column'])

  • 独热编码(One-hot Encoding):将分类变量扩展为多个二值变量。
     data = pd.get_dummies(data, columns=['category_column'])

七、文本和复杂数据的处理

  1. 处理文本数据
    • 使用TF-IDF、词袋模型(Bag of Words)或词向量(Word2Vec、GloVe)等方式将文本转化为数值向量。
     from sklearn.feature_extraction.text import TfidfVectorizer
     tfidf = TfidfVectorizer(max_features=1000)
     tfidf_matrix = tfidf.fit_transform(data['text_column'])

  1. 处理分子结构数据
    • 使用化学信息学工具(如RDKit)将SMILES字符串转换为分子特征。
     from rdkit import Chem
     from rdkit.Chem import Descriptors
     mol = Chem.MolFromSmiles('CCO')
     descriptors = [Descriptors.MolWt(mol), Descriptors.NumHDonors(mol)]

八、最终检查和保存

  1. 最终检查

    • 检查数据清洗后的完整性和一致性,确保数据准备完成。
    • 常用描述性统计和可视化(如相关矩阵)来检查数据质量。
  2. 保存清洗后的数据

    • 将清洗和处理后的数据保存为新文件,方便后续模型训练和分析。
     data.to_csv('cleaned_data.csv', index=False)

 

  • 25
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值