Datawhale 夏令营 机器学习 笔记2

  • Datawhale 夏令营 机器学习 笔记2

    • 比赛题目

      • 给定多个房屋对应电力消耗历史N天的相关序列数据等信息,预测房屋对应电力的消耗

    • 进阶思路

      • 观察数据的规律

        • 使用数据集绘制柱状图和折线图

      • 特征工程

        • 使用时间序列数据构建历史平移特征和窗口统计特征

      • 模型训练和预测

        • 使用lightgbm模型进行训练并预测

    • gbm模型

      • 模型介绍

        • GBDT (Gradient Boosting Decision Tree) 是机器学习中一个长盛不衰的模型,其主要思想是利用弱分类器(决策树)迭代训练以得到最优模型,该模型具有训练效果好、不易过拟合等优点。

      • 模型应用

        • GBDT在工业界应用广泛,通常被用于多分类、点击率预测、搜索排序等任务

      • 模型框架

        • LightGBM(Light Gradient Boosting Machine)是一个实现GBDT算法的框架,支持高效率的并行训练,并且具有更快的训练速度、更低的内存消耗、更好的准确率、支持分布式可以快速处理海量数据等优点。LightGBM 框架中还包括随机森林和逻辑回归等模型。通常应用于二分类、多分类和排序等场景。

    • 代码详解

      • 导入模块

        • 导入numpy、pandas、lgb等模块

      • 探索性数据分析(EDA)

        • 使用matplotlib库对数据进行绘图,查看数据特征

      • 特征工程

        • 历史平移特征

          • 通过历史平移获取上个阶段的信息;如下图所示,可以将d-1时间的信息给到d时间,d时间信息给到d+1时间,这样就实现了平移一个单位的特征构建

        • 窗口统计特征

          • 窗口统计可以构建不同的窗口大小,然后基于窗口范围进统计均值、最大值、最小值、中位数、方差的信息,可以反映最近阶段数据的变化情况。如下图所示,可以将d时刻之前的三个时间单位的信息进行统计构建特征给我d时刻

      • 模型训练与测试集预测

        • 训练集和验证集的构建

          • 因为数据存在时序关系,所以需要严格按照时序进行切分

          • 这里选择原始给出训练数据集中dt为30之后的数据作为训练数据,之前的数据作为验证数据

          • 这样保证了数据不存在穿越问题(不使用未来数据预测历史数据)

合并后的源代码:

# 1. 导入需要用到的相关库
# 导入 pandas 库,用于数据处理和分析
!pip install lightgbm
import pandas as pd
# 导入 numpy 库,用于科学计算和多维数组操作
import numpy as np

import lightgbm as lgb
from sklearn.metrics import mean_squared_log_error, mean_absolute_error, mean_squared_error
import tqdm
import sys
import os
import gc
import argparse
import warnings
warnings.filterwarnings('ignore')

def time_model(lgb, train_df, test_df, cols):
    # 训练集和验证集切分
    trn_x, trn_y = train_df[train_df.dt>=31][cols], train_df[train_df.dt>=31]['target']
    val_x, val_y = train_df[train_df.dt<=30][cols], train_df[train_df.dt<=30]['target']
    # 构建模型输入数据
    train_matrix = lgb.Dataset(trn_x, label=trn_y)
    valid_matrix = lgb.Dataset(val_x, label=val_y)
    # lightgbm参数
    lgb_params = {
        'boosting_type': 'gbdt',
        'objective': 'regression',
        'metric': 'mse',
        'min_child_weight': 5,
        'num_leaves': 2 ** 5,
        'lambda_l2': 10,
        'feature_fraction': 0.8,
        'bagging_fraction': 0.8,
        'bagging_freq': 4,
        'learning_rate': 0.05,
        'seed': 2024,
        'nthread' : 16,
        'verbose' : -1,
    }
    # 训练模型
    callback = [lgb.early_stopping(stopping_rounds=500, verbose=500)]
    #训练模型
    model = lgb.train(lgb_params, train_matrix, 50000, valid_sets=[train_matrix, valid_matrix],categorical_feature=[], callbacks = callback)
    # 验证集和测试集结果预测
    val_pred = model.predict(val_x, num_iteration=model.best_iteration)
    test_pred = model.predict(test_df[cols], num_iteration=model.best_iteration)
    # 离线分数评估
    score = mean_squared_error(val_pred, val_y)
    print(score)
       
    return val_pred, test_pred

# 2. 读取训练集和测试集
# 使用 read_csv() 函数从文件中读取训练集数据,文件名为 'train.csv'
train = pd.read_csv('./data/data283931/train.csv')
# 使用 read_csv() 函数从文件中读取测试集数据,文件名为 'train.csv'
test = pd.read_csv('./data/data283931/test.csv')

# 合并训练数据和测试数据,并进行排序
data = pd.concat([test, train], axis=0, ignore_index=True)
data = data.sort_values(['id','dt'], ascending=False).reset_index(drop=True)

# 历史平移
for i in range(10,30):
    data[f'last{i}_target'] = data.groupby(['id'])['target'].shift(i)
    
# 窗口统计
data[f'win3_mean_target'] = (data['last10_target'] + data['last11_target'] + data['last12_target']) / 3

# 进行数据切分
train = data[data.target.notnull()].reset_index(drop=True)
test = data[data.target.isnull()].reset_index(drop=True)

# 确定输入特征
train_cols = [f for f in data.columns if f not in ['id','target']]
  
lgb_oof, lgb_test = time_model(lgb, train, test, train_cols)

# 保存结果文件到本地
test['target'] = lgb_test
test[['id','dt','target']].to_csv('submit.csv', index=None)

最终得分:

ps:由于加班到凌晨,忘记打卡,有点遗憾,但我会继续学习

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值