1.整数在内存中的存储
1.1原码、反码、补码
整数的2进制表示方法分为三种:即原码、反码和补码。
对于有符号整数来说,三种表示方法均分为两部分:符号位和数值位。2进制序列中,最高位的1位被当作符号位,其余的则是数值位。我们用0表示符号位为“正”,用1表示符号位为“负”。
正整数的原码、反码、补码相同。
关于负整数:
原码:直接将数值按照正负数的形式翻译成二进制就是原码。
反码:将原码的符号位不变,其余位依次按位取反。
补码:反码+1。
比如:整数+10的原码、反码、补码均为:00000000 00000000 00000000 00001010
整数-10的原码:10000000 00000000 00000000 00001010
反码:11111111 11111111 11111111 11110101
补码:11111111 11111111 11111111 11110110
1.2大小端字节序
在计算机系统中,我们是以字节为单位的,每个地址单元都对应一个字节,一个字节为8个bit位,在C语言中除了8bit的char型之外,还有16bit的short型,32bit的long型,另外,对于位数大于8位的处理器,由于寄存器宽度大于一个字节,必然存在一个如何将多个字节安排的问题。因此就导致了大端存储和小端存储。
大端存储:是指数据的低位字节内容保存在内存的高地址处,而数据的高位字节内容,保存在内存的低地址处。
小端存储:是指数据的低位字节内容保存在内存的低地址处,而数据的高位字节内容,保存在内存的高地址处。
例如:
我们可以看到在a中的0x11223344是按照字节位单位,倒着储存的。所谓vs2022版本是小端存储模式。
1.3字节序判断
#include <stdio.h>
int check_sys()
{
int i = 1;
return (*(char*)&i);
}
int main()
{
int ret = check_sys();
if (ret == 1)
printf("小端存储\n");
else
printf("大端存储\n");
return 0;
}
2.浮点数在内存中的存储
2.1浮点数的存储形式
任意一个二进制浮点数V可以表示成下面的形式:V=(-1)^S*M*2^E
(-1)^S表示符号位,当S=0,V为正数,当S=1,V为负数;
M表示有效数字,M是大于等于1,小于等于2的;
2^E表示指数位。
eg`
十进制的5.0,转换成2进制为101.0,相当于1.01*2^2,按照V的格式可以得出:S=0,M=1.01,E=2。
十进制的-5.0,转换成2进制为-101.0,相当于-1.01*2^2,按照V的格式可以得出:S=1,M=1.01,E=2。
2.2浮点数存的过程
前⾯说过,1≤M<2 ,也就是说,M可以写成 1.xxxxxx 的形式,其中 xxxxxx 表⽰⼩数部分。 IEEE 754规定,在计算机内部保存M时,默认这个数的第⼀位总是1,因此可以被舍去,只保存后⾯的xxxxxx部分。⽐如保存1.01的时候,只保存01,等到读取的时候,再把第⼀位的1加上去。这样做的⽬的,是节省1位有效数字。以32位浮点数为例,留给M只有23位,将第⼀位的1舍去以后,等于可以保存24位有效数字。
⾄于指数E,情况就⽐较复杂。
⾸先,E为⼀个⽆符号整数(unsigned int)
这意味着,如果E为8位,它的取值范围为0~255;如果E为11位,它的取值范围为0~2047。但是,我们知道,科学计数法中的E是可以出现负数的,所以IEEE 754规定,存⼊内存时E的真实值必须再加上⼀个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。⽐如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001。
2.3浮点数取的过程
指数E从内存中取出还可以再分成三种情况:
1. E不全为0或不全为1
这时,浮点数就采⽤下⾯的规则表⽰,即指数E的计算值减去127(或1023),得到真实值,再将有效数字M前加上第⼀位的1。
⽐如:0.5 的⼆进制形式为0.1,由于规定正数部分必须为1,即将⼩数点右移1位,则为1.0*2^(-1),其阶码为-1+127(中间值)=126,表⽰为01111110,⽽尾数1.0去掉整数部分为0,补⻬0到23位 00000000000000000000000,则其⼆进制表⽰形式为:
0 01111110 00000000000000000000000
2. E全为0
这时,浮点数的指数E等于1-127(或者1-1023)即为真实值,有效数字M不再加上第⼀位的1,⽽是还原为0.xxxxxx的⼩数。这样做是为了表⽰±0,以及接近于0的很⼩的数字。
0 00000000 00100000000000000000000
3. E全为1
这时,如果有效数字M全为0,表⽰±⽆穷⼤(正负取决于符号位s)。
0 11111111 00010000000000000000000