有序子集最大期望值法(Ordered Subsets Expectation Maximization,OSEM)是在MLEM基础上发展起来的一种快速迭代算法,它具有空间分辨率好,抗噪能力强,重建速度快于其他迭代方法等优点。OSEM已在新型的核医学断层影像设备中广为应用,也是目前PET临床中主要的实用的迭代算法。
OSEM法在每一次迭代过程中将投影数据分成L个子集,每一个子集对重建图像各像素点值校正以后,重建图像便被更新一次,所有的子集运算一遍称为一次选代。在MLEM中,使用所用的投影数据对图像像素进行校正后重建图像才被更新一次,而在同等条件下的OSEM中重建图像已被更新L次,所以OSEM方法具有加快收敛的作用。
OSEM 算法的迭代公式为
在实际使用OSEM时,还需要注意子集平衡和子集排序两个问题。子集平衡是指每一个子集都含有相等的图像放射性参数信息,即每一个子集中的投影计数之和都相等OSEM的收敛需要子集平衡。关于子集的排序,一般没什么限制,但如果子集的顺序能为每次子迭代提供最大可能的新信息,则有可能使重建图像的质量相对较好。故子集排序一般遵从相邻子集中的投影方向间隔最大的原则。
在OSEM中,有序子集的划分方法直接影响算法的收敛速度,因而非常重要。
子集划分有多种方式,通常选择以投影角度为单位进行划分,大致分为三种①非重叠划分,即将投影划分为若干个互不重叠的子集;②可重叠划分,即划分的子集可重叠;③标准划分,相当于MLEM。如果每隔T个角度选取一个投影,投影数据就被划分为L个子集。常见的一种划分方法是间隔式子集划分,做法为:S1=