UCM方法二

import os
import numpy as np
from PIL import Image
from sklearn import svm
from sklearn.model_selection import train_test_split
# 定义函数读取图像数据
def load_images_from_folder(folder):
    images=[]
    for filenames in os.listdir(folder):
        img = Image.open(os.path.join(folder,filenames))
        img = img.resize((64,64))
        if img is not None:
            images.append(np.array(img).flatten())
    return images

X = []   #储存图像数据
y = []   #储存图像标签
root_folder = r"C:\Users\33711\Desktop\Images"  #指定根文件夹路径
for i, foldername in enumerate(os.listdir(root_folder)):   #enumerate 函数获取每个子文件夹的索引 i 和文件夹名 foldername
    images = load_images_from_folder(os.path.join(root_folder, foldername))   #调用 load_images_from_folder 函数加载指定文件夹中的图像数据
    X.extend(images)
    y.extend([i] * len(images))   #得到一个长度与当前文件夹图像数量相同的标签列表
# 将数据转换为NumPy数
X = np.array(X)
y = np.array(y)
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 训练SVM模型
clf = svm.SVC(C = 3.0,max_iter=200)
clf.fit(X_train,y_train,sample_weight=None)
# 在测试集上进行预测
predictions = clf.predict(X_test)

for i, prediction in enumerate(predictions):   #调用 enumerate函数
    print(f"样本 {i+1}: 预测类别为 {prediction}, 实际类别为 {y_test[i]}")
# 计算准确率
accuracy = clf.score(X_test, y_test)
print("准确率:", accuracy)


import os
import numpy as np
from PIL import Image
from sklearn import svm
from sklearn.model_selection import train_test_split
# 定义函数读取图像数据
def load_images_from_folder(folder):
    images=[]
    for filenames in os.listdir(folder):
        img = Image.open(os.path.join(folder,filenames))
        img = img.resize((64,64))
        if img is not None:
            images.append(np.array(img).flatten())
    return images

X = []   #储存图像数据
y = []   #储存图像标签
root_folder = r"D:\机器学习第三次作业\UCMerced_LandUse\Images"  #指定根文件夹路径
for i, foldername in enumerate(os.listdir(root_folder)):   #enumerate 函数获取每个子文件夹的索引 i 和文件夹名 foldername
    images = load_images_from_folder(os.path.join(root_folder, foldername))   #调用 load_images_from_folder 函数加载指定文件夹中的图像数据

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值