摘要
在信息过载的时代,如何帮助用户从海量视频内容中快速发现其感兴趣的部分,已成为提升平台用户粘性和活跃度的关键。个性化推荐系统作为解决这一问题的核心技术,正发挥着日益重要的作用。本文将详细阐述一个基于Spring Boot后端框架、ECharts数据可视化库以及协同过滤推荐算法的个性化视频推荐系统的设计与实现。我们将从项目架构入手,深入剖析协同过滤算法的原理与Java实现,并展示如何通过RESTful API和现代前端技术将推荐结果以直观的可视化方式呈现给用户。本文兼具理论深度与实践指导,旨在为开发者提供一个完整的、可落地的推荐系统解决方案。
第一章:系统架构与技术选型
1.1 系统总体架构
本系统采用经典的前后端分离架构,职责清晰,便于开发和维护。
-
前端:
-
负责用户界面的渲染和交互。
-
通过Ajax调用后端RESTful API获取数据。
-
使用ECharts进行数据可视化展示。
-
-
后端:
-
基于Spring Boot构建,提供稳定的REST API服务。
-
负责核心业务逻辑,包括用户管理、视频管理、推荐
-
订阅专栏 解锁全文
983

被折叠的 条评论
为什么被折叠?



