一:深度学习
一:深度学习简介
深度学习是一种基于神经网络的学习方法。和传统的机器学习方法相比,深度学习模型一般需要更丰富的数据、更强大的计算资源,同时也能达到更高的准确率。目前,深度学习方法被广泛应用于计算机视觉、自然语言处理、语音识别,强化学习等领域。
二:深度学习的定义及分类
深度学习定义:
一种基于人工神经网络的机器学习算法,它通过多层次的网络结构来学习数据的高层特征和规律。
深度学习分类:
按网络结构分类:
•前馈神经网络(Feedforward Neural Networks):信息单向流动,从输入层到输出层,中间可以有多个隐藏层。这种网络在深度学习中非常常见,用于各种模式识别任务。
循环神经网络(Recurrent Neural Networks, RNN):具有反馈环路,能够处理序列数据,如时间序列分析或自然语言处理。
•卷积神经网络(Convolutional Neural Networks, CNN):特别适用于图像和视频分析,通过卷积层来提取空间特征。
•深度信念网络(Deep Belief Networks, DBN):由多层受限玻尔兹曼机(RBM)堆叠而成,通常用于特征提取和降维。
•自编码器(Autoencoders):用于数据的压缩表示,通过学习输入数据的高效编码和解码。
•生成对抗网络(Generative Adversarial Networks, GAN):由生成器和判别器组成,能够生成新的、与真实数据相似的数据样本。
按应用领域分类:
•计算机视觉:包括图像分类、目标检测、语义分割等任务。
•自然语言处理:涉及文本分类、情感分析、机器翻译等领域。
•语音识别:将语音信号转换为文本的技术。
•游戏和决策制定:如棋类游戏中的AI对手。
•推荐系统:基于用户的历史行为数据提供个性化推荐。
按学习方法分类:
•监督学习:模型通过标注数据进行训练,预测给定输入的输出。
•无监督学习:模型在没有标签的数据中学习数据的结构和分布。
•半监督学习:结合少量标注数据和大量未标注数据进行训练。
•强化学习:模型通过与环境的交互来学习最佳行动策略。
按优化目标分类:
•分类问题:预测离散标签或类别。
•回归问题:预测连续值或数量。
•聚类问题:将数据分组到不同的集群中。
•降维问题:减少数据的维度,同时保留重要的特征信息
深度学习目标
通过模拟人类的认知能力,实现更接近于人工智能的技术水平,并在各种应用场景中提供更高效、更准确的数据处理能力。
三:深度学习主要术语
•神经元(Neuron):神经元是构成神经网络的基本单元,它接收输入,进行处理后产生输出,这个输出可以被发送到其他神经元进一步处理。
•权重(Weight):在神经网络中,输入数据在进入神经元时会乘以一个权重,这个权重决定了输入的重要性。
•激活函数(Activation Function):为了使得神经网络能够学习复杂的决策边界,会在网络的某些层应用非线性的激活函数,如sigmoid、tanh和ReLU。
•长尾效应(Long-tail):在数据分布中,大部分的数据是出现次数少的数据,而不是集中在高频率高值的数据。在深度学习中,这可能指大模型在众多小领域的安全性问题占据了主要部分。
•训练量标准(Batch/Step):在大模型的训练中,由于处理的数据量巨大,需要更精确和细粒度的衡量训练量的标准。
•损失函数(Loss Function):损失函数用于衡量模型预测结果与真实标签之间的差异。
•优化器(Optimizer):优化器是深度学习中用于更新网络权重的算法,以最小化损失函数。常见的优化器包括随机梯度下降(Stochastic Gradient Descent, SGD)、Adam、RMSprop等。
•梯度(Gradient):梯度是一个向量,表示某一函数在该点处的方向导数沿着该方向取得最大值。
•前向传播(Forward Propagation):前向传播是指数据在神经网络中从输入层到输出层的传递过程。
•反向传播&#