归并排序是一种高效且稳定的排序算法,它巧妙地将“分而治之”的思想应用于排序问题。下面我将详细讲解其原理、特点,并提供代码实现和示例。
🔍 归并排序原理
归并排序的核心思想是分治法,即把复杂问题分解成若干个易于解决的小问题,再将小问题的解合并为原问题的解。具体到排序,其过程分为三个步骤:
- 分解:递归地将当前待排序的序列平均分割成两个子序列,直到每个子序列只包含一个元素(此时自然有序)。
- 解决:递归地对子序列进行归并排序。
- 合并:将两个已排序的子序列合并成一个新的有序序列。这是归并排序的关键操作。
合并两个有序数组的过程非常直观,类似于整理两叠已经按顺序排好的卡片。我们总是比较两个子序列最前面的元素,将较小的那个放入结果序列,直到其中一个子序列的所有元素都被取完,再将另一个子序列的剩余部分直接追加到结果序列的末尾。
⏱️ 算法性能分析
理解算法的性能有助于我们在不同场景下做出合适的选择。
- 时间复杂度:在所有情况下(最好、最坏、平均),归并排序的时间复杂度均为 O(n log n)。这是因为序列每次都被对半分割,形成一棵递归树,其高度为 log₂n,而每一层合并操作的总代价为 O(n)。
- 空间复杂度:归并排序不是原地排序算法,它需要 O(n) 的额外空间来在合并阶段存储临时结果。
- 稳定性:归并排序是一种稳定的排序算法。在合并过程中,当两个元素相等时,我们可以优先选择前一个子序列中的元素,从而保证相等元素的相对顺序在排序后保持不变。
📊 与其他排序算法比较
为了更全面地看待归并排序,我们可以将其与一些常见排序算法进行简要对比:
算法 | 平均时间复杂度 | 空间复杂度 | 是否稳定 |
---|---|---|---|
归并排序 | O(n log n) | O(n) | 稳定 |
快速排序 | O(n log n) | O(log n) | 不稳定 |
堆排序 | O(n log n) | O(1) | 不稳定 |
冒泡排序 | O(n²) | O(1) | 稳定 |
归并排序的显著优势在于其稳定的 O(n log n) 时间和稳定性,缺点则是需要额外的内存空间。它非常适合对稳定性有要求或需要处理大规模数据的场景,也常用于外部排序(数据量太大无法全部装入内存的情况)。
🖥️ 代码实现与示例
以下是使用 Python 实现的归并排序算法,包含了详细的注释:
def merge_sort(arr):
"""
对数组arr进行归并排序
"""
# 基线条件:如果数组长度为0或1,则已经有序,直接返回
if len(arr) <= 1:
return arr
# 分解:找到中间点,将数组分成左右两半
mid = len(arr) // 2
left_half = arr[:mid]
right_half = arr[mid:]
# 解决:递归地对左右两半进行排序
left_sorted = merge_sort(left_half)
right_sorted = merge_sort(right_half)
# 合并:将排好序的左右两半合并成一个有序数组
return merge(left_sorted, right_sorted)
def merge(left, right):
"""
合并两个有序数组left和right
"""
sorted_arr = []# 用于存放合并结果的临时数组
i = j = 0# i和j分别作为遍历left和right的指针
# 比较两个数组的元素,将较小的依次放入sorted_arr
while i < len(left) and j < len(right):
if left[i] <= right[j]:
sorted_arr.append(left[i])
i += 1
else:
sorted_arr.append(right[j])
j += 1
# 将其中一个数组剩余的元素全部追加到sorted_arr末尾
sorted_arr.extend(left[i:])
sorted_arr.extend(right[j:])
return sorted_arr
# 测试示例
if __name__ == '__main__':
example_arr = [38, 27, 43, 3, 9, 44, 1]
sorted_arr = merge_sort(example_arr)
print("原始数组:", example_arr)
print("排序后的数组:", sorted_arr)
# 输出:排序后的数组: [1, 3, 9, 27, 38, 43, 44]
🔎 排序过程图示
以数组
[38, 27, 43, 3]
为例,其归并排序过程可以直观展示如下:
- 分解阶段:
- 初始数组:
[38, 27, 43, 3]
- 第一次分割:
[38, 27]
和[43, 3]
- 第二次分割:
[38]
,[27]
,[43]
,[3]
(每个子数组都已自然有序)
- 初始数组:
- 合并阶段:
- 合并
[38]
和[27]
得到[27, 38]
- 合并
[43]
和[3]
得到[3, 43]
- 最后合并
[27, 38]
和[3, 43]
得到最终有序数组[3, 27, 38, 43]
- 合并
💎 总结
归并排序凭借其分治策略,提供了稳定且高效的排序方案。虽然它需要额外的存储空间,但其 O(n log n) 的时间复杂度保证了对大规模数据的处理能力,稳定性也使其在特定场景下成为首选。