1、缓存菜品
避免用户端访问量多,数据库压力过大。
实现思路:
通过Redis缓存菜品数据,减少数据库查询操作。当用户端发起查询请求后,后端服务查询缓存是否存在,如果存在,读取缓存;不存在,查询数据库,载入缓存。
管理端更新时删除缓存,用户端查找时放入缓存。
缓存逻辑分析:
- 每个分类下的菜品保存一份缓存数据
- 数据库中菜品有变更时清理缓存数据
清理缓存:防止数据更新时,用户端查询到更新前数据。
避免用户端访问量多,数据库压力过大。
实现思路:
通过Redis缓存菜品数据,减少数据库查询操作。当用户端发起查询请求后,后端服务查询缓存是否存在,如果存在,读取缓存;不存在,查询数据库,载入缓存。
管理端更新时删除缓存,用户端查找时放入缓存。
缓存逻辑分析:
清理缓存:防止数据更新时,用户端查询到更新前数据。