Python数学建模学习-莱斯利(Leslie)种群模型

文章介绍了Leslie模型,一种用于研究生物种群离散年龄结构增长的数学模型,通过划分年龄组、计算生存率和繁殖率预测种群变化。Python编程示例展示了如何应用此模型计算不同时期的种群数量,特别强调了特征值和特征向量在分析中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Leslie模型是一种用于离散时间的生物种群增长模型,经常用于描述年龄结构对种群增长的影响。在1945年,人口生态学家Patrick H. Leslie(莱斯利)为了研究具有离散年龄结构的种群,特别是对于有不同年龄阶段的生物,如昆虫、鱼类、鸟类等,提出了Leslie模型。

Leslie模型的基本思想是,将种群划分为不同年龄阶段(类别),然后根据不同年龄阶段的生存率和繁殖率来预测未来的种群变化。模型中的年龄结构是离散的,通常划分为几个年龄组。这个模型对于研究种群的年龄结构和生命周期变化非常有用。

模型建立

  • 在某动物种群中,仅考查雌性动物的年龄和数量;
  • 设雌性动物的最大生存年龄为L(单位:年);
  • \left [ 0,L \right ]等分为n个年龄组,每一年龄组的长度为L/n
  • n个年龄组分别为(从第1组到第n组)

  • 设第i个年龄组的生育率为a_i{_{}},存活率为b_i{_{}}(i=1,2,⋯,n),a_i{_{}}b_i{_{}}均为常数,且 

 a_i{_{}}\geqslant 0,0< b_i{}\leqslant 1(i=1,2,3,\cdot \cdot \cdot,n )

  • 设至少有一个a_i{_{}}>0 (1≤in);
  • 即至少有一个年龄组的雌性动物具有生育能力.
  • 由统计资料可获得基年(t=0)该种群在各年龄组的雌性动物数量.
  • x^{(0)_{}^{}}_i{} (i=1,2,⋯,n)为t=0时第i年龄组雌性动物的数量.
  • 初始时刻各年龄组种群数量分布向量

  • 若以年龄组的间隔\frac{L}{n}作为时间单位,记 

  • t_k{}时各年龄组种群数量分布向量 

  • 随着时间的变化,由于出生、死亡以及年龄的增长,该种群中每一个年龄组的雌性动物数量都将发生变化.
  • t_k{}时刻,种群中第1个年龄组的雌性动物数量应等于在t_k{}{}_-{}{}_1t_k{}之间出生的所有雌性幼体的总和,即

  • 同时,在t_k{}时刻,第i+1个年龄组(i=1,2,⋯,n-1)中雌性动物的数量应等于在t_k{}{}_-{}{}_1时刻第i个年龄组中雌性动物数量x_{i}^{(k-1)}乘存活率b_i{},即

  • 由式(2-3)可得在t_k{}t_k{}{}_-{}{}_1时刻各年龄组中雌性动物数量间的关系:

  • 记矩阵

  • 式(3)可写成

  • L莱斯利矩阵(Leslie).
  • 由式(5),可得

  •  一般地

  • 若已知初始时各年龄组种群数量分布向量x^{(0)},则可推算任一时刻t_k{}该种群数量分布向量.

    以上是相关理论介绍,下面举例说明

示例

  • 某种动物雌性的最大生存年龄为15年,
  • 以5年为一间隔,把这一动物种群分为3个年龄组[0,5),[5,10),[10,15],
  • 利用统计统计资料,已知生育率和存活率分别为:

  • 在初始时刻t=0时,3个年龄组的雌性动物个数分别为500,1000,500
  • 初始种群数量分布向量和莱斯利矩阵为:

  • 于是

  • 为了分析当k\rightarrow \infty时,该动物种群数量分布向量的特点,先求出矩阵L的特征值与特征向量.
  • 计算L的特征多项式

  • 由此可得L的特征值

  • \lambda _1{}是矩阵L的唯一正特征值,且

  • L有3个互异特征值,因此矩阵L可相似对角化.
  • 设矩阵L属于特征值\lambda _i{} (i=1,2,3)的特征向量为\alpha _i{}.
  • 计算L属于特征值\lambda _1{}=\frac{3}{2}的特征向量为

  • 记矩阵

  • 因为\left | \frac{_{\lambda _{2}}}{\lambda _{1}} \right |<1,\left | \frac{_{\lambda _{3}}}{\lambda _{1}} \right |<1,所以:

  • 记列向量P^{-1}X^{(0)}的第一个元素为 c(常数),则式(6)可化为

  •  当k充分大时,近似地成立

其中c=\frac{250}{19}.

  • 当时间充分长,这种动物中雌性的年龄分布将趋于稳定,即3个年龄组的数量比为18:6:1.
  • 可近似得到在t_{k}时刻种群中雌性动物的总量,从而对整个种群的总量进行估计.
  • 莱斯利模型在分析动物种群的年龄分布和总量增长方面有广泛应用,也可应用于人口增长的年龄分布问题.

【提示:以上涉及高数内容对很多伙伴包括我很困难,大家可以结合后面的编程内容,交互学习,能看懂算出结果比推导公式明白原理更重要】 

Python编程计算代码如下:

import numpy as np  # 导入NumPy库,并简化为np  
import sympy as sp  # 导入SymPy库,并简化为sp  
  
# 定义初始向量X0  
X0 = np.array([500, 1000, 500])  
  
# 定义矩阵L  
L = np.array([[0, 4, 3], [0.5, 0, 0], [0, 0.25, 0]])  
  
# 矩阵乘法计算X1和X2  
X1 = L @ X0; X2 = L @ X1  # @表示矩阵乘法  
X3 = L @ X2  
  
# 定义符号矩阵Ls  
Ls = sp.Matrix([[0, 4, 3], [sp.Rational(1,2), 0, 0],  
                 [0, sp.Rational(1,4), 0]])  # 使用Rational来确保精确计算  
  
# 定义符号变量lamda  
sp.var('lamda')  
  
# 计算特征多项式  
p = Ls.charpoly(lamda)  
  
# 计算特征根  
w1 = sp.roots(p)  
  
# 直接计算特征值  
w2 = Ls.eigenvals()  
  
# 直接计算特征向量  
v = Ls.eigenvects()  
  
# 打印特征值和特征向量  
print("特征值为:", w2)  
print("特征向量为:\n", v)  
  
# 相似对角化  
P, D = Ls.diagonalize()  
  
# 求逆矩阵  
Pinv = P.inv()  
  
# 简化逆矩阵  
Pinv = sp.simplify(Pinv)  
  
# 将逆矩阵应用于初始向量X0  
cc = Pinv @ X0  
  
# 打印变换矩阵P和变换后的系数c  
print('P=\n', P)  
print('c=', cc[0])

结果输出:

特征值为: {3/2: 1, -3/4 - sqrt(5)/4: 1, -3/4 + sqrt(5)/4: 1}
特征向量为:
 [(3/2, 1, [Matrix([
[18],
[ 6],
[ 1]])]), (-3/4 - sqrt(5)/4, 1, [Matrix([
[3*sqrt(5) + 7],
[ -3 - sqrt(5)],
[            1]])]), (-3/4 + sqrt(5)/4, 1, [Matrix([
[7 - 3*sqrt(5)],
[ -3 + sqrt(5)],
[            1]])])]
P=
 Matrix([[18, 3*sqrt(5) + 7, 7 - 3*sqrt(5)], [6, -3 - sqrt(5), -3 + sqrt(5)], [1, 1, 1]])
c= 2250/19

  • 如要计算第k=2个时期的种群数量,代码如下:
# 导入numpy库,用于数组操作
import numpy as np
# 导入sympy库,用于符号计算
import sympy as sp

# 定义一个初始种群向量X0,包含三个年龄段的种群数量
X0 = np.array([500, 1000, 500])

# 定义Leslie矩阵L,描述了不同年龄段种群的转化关系
L = np.array([[0, 4, 3], [0.5, 0, 0], [0, 0.25, 0]])

# 计算第一年的种群向量X1,即L乘以初始种群向量X0
X1 = L @ X0
# 计算第二年的种群向量X2,即L乘以第一年的种群向量X1
X2 = L @ X1
# 计算第三年的种群向量X3,即L乘以第二年的种群向量X2
X3 = L @ X2

# 定义符号矩阵Ls,这里使用了Rational来确保计算中的分数是精确的
Ls = sp.Matrix([[0, 4, 3], [sp.Rational(1, 2), 0, 0], [0, sp.Rational(1, 4), 0]])

# 定义符号变量lamda,用于特征多项式的计算
lamda = sp.var('lamda')

# 计算矩阵Ls的特征多项式
p = Ls.charpoly(lamda)

# 注释掉了计算特征值和特征向量的代码,因为在后面有重新计算
# w11 = Ls.eigenvals()
# w22 = Ls.eigenvects()

# 计算特征多项式的根,即特征值
w1 = sp.roots(p)

# 直接计算矩阵Ls的特征值
w2 = Ls.eigenvals()

# 直接计算矩阵Ls的特征向量
v = Ls.eigenvects()

# 注释掉了打印特征值和特征向量的代码
# print("特征值", w2)
# print(w1)
# print('特征向量', v)

# 对矩阵Ls进行相似对角化,得到变换矩阵P和对角矩阵D
P, D = Ls.diagonalize()

# 计算变换矩阵P的逆矩阵
Pinv = P.inv()

# 简化逆矩阵Pinv
Pinv = sp.simplify(Pinv)

# 将逆矩阵Pinv应用于初始种群向量X0,得到变换后的系数cc
cc = Pinv @ X0

# 注释掉了打印变换矩阵P和系数cc的代码
# print(P)
# print(cc[0])
# print(w1)
# print(v)

# 定义符号变量k,表示时期数,且k为正整数
k = sp.var('k', positive=True, integer=True)

# 计算第k个时期的种群数量,通过相似对角化后的形式进行计算
xk = P @ (D ** k) @ Pinv @ sp.Matrix(X0)

# 注释掉了打印第k个时期种群数量和特定元素的代码
# print(xk)
# print(xk[0])

# 简化第k个时期的种群数量表达式
s = sp.simplify(xk[0])

# 将k替换为2,并计算数值结果,即第二个时期的种群数量
print(s.subs(k, 2).n())

结果输出【中间部分代码进行了注释,大家可以根据需要打开学习】:

1750.00000000000


参考文献

[1] 司守奎,孙兆亮. Python数学建模算法与应用. 北京:国防工业出版社,2022.


本文内容来源于《Python数学建模算法与应用》教材和网络,仅供参考学习,如内容、图片有任何版权问题,请联系处理,24小时内删除。

本文建立了我国人口增长的预测模型,对各年份全国人口总量增长的中短期和长期趋势作出了预测,并对人口老龄化、人口抚养比等一系列评价指标进行了预测。最后提出了有关人口控制与管理的措施。模型Ⅰ:建立了Logistic人口阻滞增长模型,利用附件2中数据,结合网上查找补充的数据,分别根据从1954年、1963年、1980年到2005年三组总人口数据建立模型,进行预测,把预测结果与附件1《国家人口发展战略研究报告》中提供的预测值进行分析比较。得出运用1980年到2005年的总人口数建立模型预测效果好,拟合的曲线的可决系数为0.9987。运用1980年到2005年总人口数据预测得到2010年、2020年、2033年我国的总人口数分别为13.55357亿、14.18440亿、14.70172亿。 模型Ⅱ:考虑到人口年龄结构对人口增长的影响,建立了按年龄分布的女性模型Leslie模型): 以附件2中提供的2001年的有关数据,构造Leslie矩阵,建立相应 Leslie模型;然后,根据中外专家给出的人口更替率1.8,构造Leslie矩阵,建立相应的 Leslie模型。 首先,分别预测2002年到2050年我国总人口数、劳动年龄人口数、老年人口数(见附录8),然后再用预测求得的数据分别对全国总人口数、劳动年龄人口数的发展情况进行分析,得出:我国总人口在2010年达到14.2609亿人,在2020年达到14.9513亿人,在2023年达到峰值14.985亿人;预测我国在短期内劳动力不缺,但须加强劳动力结构方面的调整。 其次,对人口老龄化问题、人口抚养比进行分析。得到我国老龄化在加速,预计本世纪40年代中后期形成老龄人口高峰平台,60岁以上老年人口达4.45亿人,比重达33.277%;65岁以上老年人口达3.51亿人,比重达25.53%;人口抚养呈现增加的趋势。 再次,讨论我国人口的控制,预测出将来我国育龄妇女人数与生育旺盛期育龄妇女人数,得到育龄妇女人数在短期内将达到高峰,随后又下降的趋势的结论。 最后,分别对模型Ⅰ与模型Ⅱ进行残差分析、优缺点评价与推广。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Pythoner研习社

整理不易,感谢金主!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值