数模(6):Leslie矩阵人口模型

上期中介绍了两种利用非线性函数拟合人口与物种增长趋势的方法。这两种方法都可以用于对人口与物种增长的总体趋势进行预测,但预测不够精细。我们知道在正常社会条件或自然条件下,生育率与死亡率是与群体的年龄构成息息相关的。我们需要对整个群体按年龄进行层次划分,构建与年龄相联系的人口模型。典型的例子就是Leslie矩阵模型。

Leslie矩阵介绍

我们把整个社会中的人群按年龄等距分成n组,每组中该年的人口总数为 a i , i = 1 , 2 , . . . , n a_i,i=1,2,...,n ai,i=1,2,...,n,每组人口的每年的普遍存活率为 c i , i = 1 , 2 , . . . , n − 1 c_i,i=1,2,...,n-1 ci,i=1,2,...,n1(设最后一组下一年全部死亡),每组人口的每年普遍生育率为 b i , i = 1 , 2 , . . . , n b_i,i=1,2,...,n bi,i=1,2,...,n,则下一年每组中的人口总数 a i ′ , i = 1 , 2 , . . . , n a'_i,i=1,2,...,n ai,i=1,2,...,n就满足递推关系式 { a i ′ = a i − 1 c i − 1 , i = 2 , 3 , . . . , n a 1 ′ = ∑ i = 1 n a i b i \begin{cases}a'_i=a_{i-1}c_{i-1},i=2,3,...,n\\a'_1=\sum_{i=1}^{n}a_ib_i\end{cases} {ai=ai1ci1,i=2,3,...,na1=i=1naibi

该式可写成矩阵乘向量的形式:
a ′ ⃗ = ( b 1 b 2 . . . b n − 1 b n c 1 0 . . . 0 0 0 c 2 . . . 0 0 ⋮ ⋮ ⋮ 0 0 . . . c n − 1 0 ) ( a 1 , a 2 , . . . , a n ) T \vec{a'}= \left( \begin{matrix} b_1&b_2&...&b_{n-1}&b_n\\ c_1&0&...&0&0\\ 0&c_2&...&0&0\\ \vdots&\vdots&&\vdots\\ 0&0&...&c_{n-1}&0 \end{matrix} \right) (a_1,a_2,...,a_n)^T a =b1c100b20c20............bn100cn1bn000(a1,a2,...,an)T

该式中左边的矩阵就是Leslie矩阵。

Leslie矩阵性质

  1. Leslie矩阵有唯一的单重正特征值 λ 1 \lambda_1 λ1,对应的特征向量 x ⃗ 1 = ( 1 , b 1 / λ 1 , c 1 c 2 / λ 1 2 , . . . , c 1 c 2 . . . c n − 1 / λ 1 n − 1 ) T \vec x_1=(1,b_1/\lambda_1,c_1c_2/\lambda_1^2,...,c_1c_2...c_{n-1}/\lambda_1^{n-1})^T x 1=(1,b1/λ1,c1c2/λ12,...,c1c2...cn1/λ1n1)T

证明:设n阶的该矩阵为Ln,n阶的特征多项式为Pn,则有
P n = ∣ λ I − L n ∣ = ∣ λ − b 1 − b 2 . . . − b n − 1 − b n − c 1 λ . . . 0 0 0 − c 2 . . . 0 0 ⋮ ⋮ ⋮ 0 0 . . . − c n − 1 λ ∣ P_n=|\lambda I-L_n|= \left| \begin{matrix} \lambda-b_1&-b_2&...&-b_{n-1}&-b_n\\ -c_1&\lambda&...&0&0\\ 0&-c_2&...&0&0\\ \vdots&\vdots&&\vdots&&\\ 0&0&...&-c_{n-1}&\lambda \end{matrix} \right| Pn=λILn=λb1c100b2λc20............bn100cn1bn00λ
= > P n = λ ∣ λ − b 1 − b 2 . . . − b n − 2 − b n − 1 − c 1 λ . . . 0 0 0 − c 2 . . . 0 0 ⋮ ⋮ ⋮ 0 0 . . . − c n − 2 λ ∣ + c n − 1 ∣ λ − b 1 − b 2 . . . − b n − 3 − b n − 1 − c 1 λ . . . 0 0 0 − c 2 . . . 0 0 ⋮ ⋮ ⋮ 0 0 . . . − c n − 2 0 ∣ =>P_n=\lambda \left| \begin{matrix} \lambda-b_1&-b_2&...&-b_{n-2}&-b_{n-1}\\ -c_1&\lambda&...&0&0\\ 0&-c_2&...&0&0\\ \vdots&\vdots&&\vdots&&\\ 0&0&...&-c_{n-2}&\lambda \end{matrix} \right|+c_{n-1} \left| \begin{matrix} \lambda-b_1&-b_2&...&-b_{n-3}&-b_{n-1}\\ -c_1&\lambda&...&0&0\\ 0&-c_2&...&0&0\\ \vdots&\vdots&&\vdots&&\\ 0&0&...&-c_{n-2}&0 \end{matrix} \right| =>Pn=λλb1c100b2λc20............bn200cn2bn100λ+cn1λb1c100b2λc20............bn300cn2bn1000
= > P n = λ P n − 1 + c n − 1 ( − b n − 1 ) ( c 1 c 2 . . . c n − 2 ) ( − 1 ) n − 2 ( − 1 ) n − 2 = > P n = λ P n − 1 − b n − 1 c 1 c 2 . . . c n − 1 =>P_n=\lambda P_{n-1}+c_{n-1}(-b_{n-1})(c_1c_2...c_{n-2})(-1)^{n-2}(-1)^{n-2}=> P_n=\lambda P_{n-1}-b_{n-1}c_1c_2...c_{n-1} =>Pn=λPn1+cn1(bn1)(c1c2...cn2)(1)n2(1)n2=>Pn=λPn1bn1c1c2...cn1
= > P n = λ P n − 1 − β n − 1 = > P n = λ n − β 1 λ n − 1 − β 2 λ n − 2 − . . . − β n = > =>P_n=\lambda P_{n-1}-\beta_{n-1}=> P_n=\lambda^n-\beta_1\lambda^{n-1}-\beta_2\lambda^{n-2}-...-\beta_n=> =>Pn=λPn1βn1=>Pn=λnβ1λn1β2λn2...βn=>
0 = λ n − β 1 λ n − 1 − β 2 λ n − 2 − . . . − β n = > P n = λ n − β 1 λ n − 1 − β 2 λ n − 2 − . . . − β n = > 0=\lambda^n-\beta_1\lambda^{n-1}-\beta_2\lambda^{n-2}-...-\beta_n=>P_n=\lambda^n-\beta_1\lambda^{n-1}-\beta_2\lambda^{n-2}-...-\beta_n=> 0=λnβ1λn1β2λn2...βn=>Pn=λnβ1λn1β2λn2...βn=>
1 = β 1 λ − 1 + β 2 λ − 2 + . . . + β n λ − n 1=\beta_1\lambda^{-1}+\beta_2\lambda^{-2}+...+\beta_n\lambda^{-n} 1=β1λ1+β2λ2+...+βnλn右边的函数是单调连续减函数,且 λ \lambda λ无穷大时趋近0、 λ \lambda λ趋近于0时趋近正无穷,所以有唯一正特征根 λ 1 \lambda_1 λ1,对应的特征向量为 x ⃗ 1 = ( 1 , b 1 / λ 1 , c 1 c 2 / λ 1 2 , . . . , c 1 c 2 . . . c n − 1 / λ 1 n − 1 ) T \vec x_1=(1,b_1/\lambda_1,c_1c_2/\lambda_1^2,...,c_1c_2...c_{n-1}/\lambda_1^{n-1})^T x 1=(1,b1/λ1,c1c2/λ12,...,c1c2...cn1/λ1n1)T

  1. 所有负的特征值都满足 ∣ λ ∣ < λ 1 |\lambda|<\lambda_1 λ<λ1,称 λ 1 \lambda_1 λ1严格优势特征值

证明:设有特征值满足 ∣ λ ∣ ≥ λ 1 = > λ ≥ − λ 1 |\lambda|\geq\lambda_1=>\lambda\geq-\lambda_1 λλ1=>λλ1,则有其依然满足 1 = β 1 λ − 1 + β 2 λ − 2 + . . . + β n λ − n 1=\beta_1\lambda^{-1}+\beta_2\lambda^{-2}+...+\beta_n\lambda^{-n} 1=β1λ1+β2λ2+...+βnλn ,而 1 = β 1 λ 1 − 1 + β 2 λ 1 − 2 + . . . + β n λ 1 − n ≥ β ∣ λ − 1 ∣ + β ∣ λ − 2 ∣ + . . . + β ∣ λ − n ∣ > β λ − 1 + β λ − 2 + . . . + β λ − n 1=\beta_1\lambda_1^{-1}+\beta_2\lambda_1^{-2}+...+\beta_n\lambda_1^{-n} \geq\beta|\lambda^{-1}|+\beta|\lambda^{-2}|+...+\beta|\lambda^{-n}|>\beta\lambda^{-1}+\beta\lambda^{-2}+...+\beta\lambda^{-n} 1=β1λ11+β2λ12+...+βnλ1nβλ1+βλ2+...+βλn>βλ1+βλ2+...+βλn,矛盾

  1. 对于任意人口分布向量 x ⃗ \vec x x ,其迭代k次后的结果有 lim ⁡ k − > + ∞ x ⃗ ( k ) λ 1 k = c x ⃗ 1 \displaystyle \lim_{k->+∞} \frac{\vec x^{(k)}}{\lambda_1^k}=c\vec x_1 k>+limλ1kx (k)=cx 1(c为常数),即迭代了无穷多次时,人口的分布比例趋近于特征向量 x ⃗ 1 \vec x_1 x 1,而人口增长率趋近于特征值 λ 1 \lambda_1 λ1

证明:仅对可化为对角阵的情况进行证明(一般情况需要用到约旦标准型)。 lim ⁡ k − > + ∞ x ⃗ ( k ) λ 1 k = lim ⁡ k − > + ∞ L k x ⃗ ( 0 ) λ 1 k = lim ⁡ k − > + ∞ ( P d i a g ( λ 1 , λ 2 , . . . , λ n ) P − 1 ) k x ⃗ ( 0 ) λ 1 k = lim ⁡ k − > + ∞ P d i a g ( λ 1 k , λ 2 k , . . . , λ n k ) P − 1 x ⃗ ( 0 ) λ 1 k = lim ⁡ k − > + ∞ P d i a g ( 1 , λ 2 k / λ 1 k , . . . , λ n k / λ 1 k ) P − 1 x ⃗ ( 0 ) \displaystyle \lim_{k->+∞} \frac{\vec x^{(k)}}{\lambda_1^k}=\displaystyle \lim_{k->+∞} \frac{L^k\vec x^{(0)}}{\lambda_1^k}=\displaystyle \lim_{k->+∞} \frac{(Pdiag(\lambda_1,\lambda_2,...,\lambda_n)P^{-1})^k\vec x^{(0)}}{\lambda_1^k}=\displaystyle \lim_{k->+∞} \frac{Pdiag(\lambda_1^k,\lambda_2^k,...,\lambda_n^k)P^{-1}\vec x^{(0)}}{\lambda_1^k}=\displaystyle \lim_{k->+∞} Pdiag(1,\lambda_2^k/\lambda_1^k,...,\lambda_n^k/\lambda_1^k)P^{-1}\vec x^{(0)} k>+limλ1kx (k)=k>+limλ1kLkx (0)=k>+limλ1k(Pdiag(λ1,λ2,...,λn)P1)kx (0)=k>+limλ1kPdiag(λ1k,λ2k,...,λnk)P1x (0)=k>+limPdiag(1,λ2k/λ1k,...,λnk/λ1k)P1x (0),由于 λ 1 \lambda_1 λ1严格优势特征值,有 原 式 = lim ⁡ k − > + ∞ P d i a g ( 1 , 0 , . . . , 0 ) P − 1 x ⃗ ( 0 ) = ( x ⃗ 1 , x ⃗ 2 , . . . , x ⃗ n ) d i a g ( 1 , 0 , . . . , 0 ) ( x ⃗ 1 ′ , x ⃗ 2 ′ , . . . , x ⃗ n ′ ) ( a 1 , a 2 , . . . , a n ) T = c x ⃗ 1 原式=\displaystyle \lim_{k->+∞} Pdiag(1,0,...,0)P^{-1}\vec x^{(0)}=(\vec x_1,\vec x_2,...,\vec x_n)diag(1,0,...,0)(\vec x'_1,\vec x'_2,...,\vec x'_n)(a_1,a_2,...,a_n)^T=c\vec x_1 =k>+limPdiag(1,0,...,0)P1x (0)=(x 1,x 2,...,x n)diag(1,0,...,0)(x 1,x 2,...,x n)(a1,a2,...,an)T=cx 1

总结

列出Leslie矩阵,我们即可对人口年龄分布进行迭代。且无论一开始的人口分布向量如何,人口比例在迭代无数次之后总趋近于特征向量 x ⃗ 1 \vec x_1 x 1。而人口增长率趋近于特征值 λ 1 \lambda_1 λ1,说明特征值 λ 1 \lambda_1 λ1可以用于预测人口增长速度,对于计生有重要意义。

  • 31
    点赞
  • 160
    收藏
    觉得还不错? 一键收藏
  • 6
    评论
本文建立了我国人口增长的预测模型,对各年份全国人口总量增长的中短期和长期趋势作出了预测,并对人口老龄化、人口抚养比等一系列评价指标进行了预测。最后提出了有关人口控制与管理的措施。模型Ⅰ:建立了Logistic人口阻滞增长模型,利用附件2中数据,结合网上查找补充的数据,分别根据从1954年、1963年、1980年到2005年三组总人口数据建立模型,进行预测,把预测结果与附件1《国家人口发展战略研究报告》中提供的预测值进行分析比较。得出运用1980年到2005年的总人口数建立模型预测效果好,拟合的曲线的可决系数为0.9987。运用1980年到2005年总人口数据预测得到2010年、2020年、2033年我国的总人口数分别为13.55357亿、14.18440亿、14.70172亿。 模型Ⅱ:考虑到人口年龄结构对人口增长的影响,建立了按年龄分布的女性模型Leslie模型): 以附件2中提供的2001年的有关数据,构造Leslie矩阵,建立相应 Leslie模型;然后,根据中外专家给出的人口更替率1.8,构造Leslie矩阵,建立相应的 Leslie模型。 首先,分别预测2002年到2050年我国总人口数、劳动年龄人口数、老年人口数(见附录8),然后再用预测求得的数据分别对全国总人口数、劳动年龄人口数的发展情况进行分析,得出:我国总人口在2010年达到14.2609亿人,在2020年达到14.9513亿人,在2023年达到峰值14.985亿人;预测我国在短期内劳动力不缺,但须加强劳动力结构方面的调整。 其次,对人口老龄化问题、人口抚养比进行分析。得到我国老龄化在加速,预计本世纪40年代中后期形成老龄人口高峰平台,60岁以上老年人口达4.45亿人,比重达33.277%;65岁以上老年人口达3.51亿人,比重达25.53%;人口抚养呈现增加的趋势。 再次,讨论我国人口的控制,预测出将来我国育龄妇女人数与生育旺盛期育龄妇女人数,得到育龄妇女人数在短期内将达到高峰,随后又下降的趋势的结论。 最后,分别对模型Ⅰ与模型Ⅱ进行残差分析、优缺点评价与推广。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值