你还不会暴力搜索吗,dfs(深度优先搜索)详解,看这一篇就够啦

在这里插入图片描述

🚀欢迎互三👉: 2的n次方_💎💎
🚀所属专栏:数据结构与算法学习⭐⭐
在这里插入图片描述

🍃1. 算法思想

DFS算法的基本思想是从图中的某个顶点v出发,访问此顶点,然后依次从v的未被访问的邻接点出发深度优先遍历图,直至图中所有和v有路径相通的顶点都被访问到。若此时图中尚有顶点未被访问,则另选图中一个未曾被访问的顶点作起始点,重复上述过程,整个进程反复进行直到所有顶点都被访问为止。

在这里插入图片描述
从上图中可以直观的感受到这种思想
就是一条路走到黑的思想,走到无路可走再回退到上一层,再选择另一条路继续一直走,再回退,直到整个遍历完成,深度优先搜索一般是通过递归来实现的,“递”的过程就是往下搜的过程对应着深度,“归”的过程就是回溯,回退上一级

🍃2. 三种枚举方式

🍃2.1 指数型枚举

在这里插入图片描述
指数型枚举是指一共有n个数,每一个数都有两种状态,也就是选或不选,时间复杂度也就是2^n,指数级的
例如3个数的枚举时,每一个数都有选和不选两种状态,可以根据这个画出递归搜索树
在这里插入图片描述

接着用代码实现一下

#include <iostream>
using namespace std;
int n;
int vis[20];
void dfs(int x){
	//表示已经n个数都被判断过了,一种方案已经搜索完成
    if(x > n){
        for(int i = 1;i <= n;i++){
            if(vis[i] == 1)
            cout<<i<<" ";
        }
        cout<<'\n';
        return;
    }
    vis[x] = 2;//表示不选
    dfs(x+1);//继续搜下一个
    vis[x] = 0;//回溯
    vis[x] = 1;//表示选
    dfs(x+1);//继续搜下一个
    vis[x] = 0;//回溯

}
int main(){
    cin>>n;
    dfs(1);
    return 0;
}

🍃2.2 排列型枚举

排列型枚举是一种生成给定集合所有可能排列的方法,其实在中学阶段我们就学过排列组合的问题,排列是区分顺序的,例如,同样是1 2 3三个数字,1,2, 3和 1,3,2是两种方案。
来看下面的一个例题:
在这里插入图片描述
很简单,就是生成n个数字的全排列方案,在用代码实现的过程中,需要另外再开一个vis数组,表示状态,以此来区分是否被选过

#include <bits/stdc++.h>
using namespace std;
int vis[15];
int a[15];
int n;
void dfs(int x){
	//表示n个数字都已经选过了
    if(x > n){
        for(int i = 1;i <= n;i++){
            cout<<setw(5)<<a[i];//题目中要求5个场宽
        }
        cout<<'\n';
        return;
    }
    for(int i = 1;i <= n;i++){
        if(!vis[i]){
            vis[i] = 1;//选过标记为1
            a[x] = i;//表示该数字被选上了
            dfs(x+1);//继续选下一个数字
            vis[i] = 0;//回溯重置该数字的状态
            a[x] = 0;//,也可以不写,因为数据可以直接覆盖
        }
    }
}

int main(){
    cin>>n;
    dfs(1);
    return 0;
}

也就是依次枚举n个数,当这n个数选出一种方案之后,就回溯,再判断其它分支

🍃2.3 组合型枚举

组合是从n个不同元素中取出m(m≤n)个元素的所有取法,组合不考虑元素的顺序。也就是 1 2 3 和 1 3 2是同一种方案
在这里插入图片描述
这次的dfs中采用了两个参数,一个表示枚举了几个数,一个表示从哪个数开始往后选,因为这次是组合型枚举,例如,在选了1 3 2之前,1 2 3肯定也已经选过了,所以不会有1 3 2这种情况出现,从哪个数开始往后选,都是选的比这个数字典序大的数,不存在字典数大的数排在字典数小的之前的情况,所以要记录从哪个数开始往后选

#include <bits/stdc++.h>
using namespace std;
int a[25];
int n,r;
void dfs(int x,int start){
	//已经选够的情况
    if(x > r){
        for(int i = 1;i<=r;i++){
            cout<<setw(3)<<a[i];
        }
        cout<<'\n';
        return;
    }
    for(int i = start;i<=n;i++){
        a[x] = i;
        dfs(x+1,i+1);//选下一个数字,并且下一个数字的字典序要比本次大,也就是从i+1开始往后选
        a[x] = 0;
    }
}
int main(){
    cin>>n>>r;
    dfs(1,1);
    return 0;
}

🍃3. 剪枝优化

在深度优先搜索(DFS)中,剪枝是一种常用的优化技术,用于减少不必要的搜索空间,从而提高搜索效率。剪枝的核心思想是在搜索过程中,尽早地识别和排除那些不可能产生解的路径或状态,从而避免在这些无效路径上浪费时间和资源。
dfs(深度优先搜索)其实是一种特别暴力的算法,也就是我们常说的暴力搜索,时间复杂度一般都是指数级或阶乘级的这样,这时,剪枝就显得尤为重要,不然特别容易超时
在这里插入图片描述

来看一道洛谷的典型题P1088:火星人
在这里插入图片描述

这题是不是就是我们之前讲到的全排列类型的题,意思就是给出一个排列方式,按照字典序求这种方式以后的第几种排列

这次用Java实现一下:

public class Main {
    static int n = 0, r = 0;//n个数字,求第r中排列方式
    static int cnt = 0;//记录次数
    static int[] arr = new int[10010];
    static int[] mars = new int[10010];//火星人的排列
    static boolean[] vis = new boolean[10010];//记录状态
    static boolean falg = false;//记录状态,后面用于剪枝

    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);
        n = sc.nextInt();
        r = sc.nextInt();
        for (int i = 1; i <= n; i++) {
            mars[i] = sc.nextInt();
        }
        dfs(1);
    }

    public static void dfs(int x) {
    	//剪枝,后面的不用再去排列了
        if (falg) {
            return;
        }
        if (x > n) {
            cnt++;
            if (cnt == r + 1) {
            	//表示已经找到了答案
                falg = true;
                for (int i = 1; i <= n; i++) {
                    System.out.print(arr[i] + " ");
                }
                System.out.println();
            }
            return;
        }
        //和之前写的排列模板一样
        for (int i = 1; i <= n; i++) {
        	//表示从火星人给出的排列方案开始往后搜索
            if (cnt == 0) {
                i = mars[x];
            }
            if (!vis[i]) {
                arr[x] = i;
                vis[i] = true;
                dfs(x + 1);
                vis[i] = false;
            }
        }
    }
}

这道题我们就很好的利用了剪枝进行优化,不然按照原来算法的时间复杂度肯定是会超时的,当我们找到目标方案之后,后面的方案就没必要进行搜索了,此时直接退出函数,也就是剪枝
每一题的剪枝方案需要具体题目具体分析。

🍃4. 图的搜索

步骤:
1.选择起始点:从图的某个顶点v开始。
2.标记当前顶点:将当前顶点v标记为已访问,以避免重复访问。
3.遍历邻接点:对于v的每个未访问的邻接点w,递归地执行DFS,从w开始。
4.回溯:当没有更多的邻接点可以遍历时,返回到上一步的顶点。

下面看一道例题:

洛谷1683:入门

图的存储:通过二维数组进行存储
怎么往四个方向进行搜索:定义两个方向数组

在这里插入图片描述

#include <iostream>
using namespace std;
const int N = 25;
char arr[N][N];
bool vis[N][N];
int res;
int x, y;
//方向数组,四个方向进行搜索
int dx[4] = { -1,0,1,0 };
int dy[4] = { 0,1,0,-1 };
void dfs(int m,int n){
    for(int i = 0;i < 4;i++){
        int a = m + dx[i];
        int b = n + dy[i];
        if(vis[a][b]) continue;
        if(arr[a][b] != '.')continue;//只能走"."
        if(a < 0 || a >= x) continue;//不能越界
        if(b < 0 || b >= y) continue;
        vis[a][b] = true;
        res++;
        dfs(a,b);//本题不需要回溯,直接往下搜
    }
}

int main(){
    ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
	cin >> y >> x;
	for (int i = 0; i < x; i++) {
		for (int j = 0; j < y; j++) {
			cin >> arr[i][j];
		}
	}
	for (int i = 0; i < x; i++) {
		for (int j = 0; j < y; j++) {
			//从起点开始搜索
			if (arr[i][j] == '@') {
				vis[i][j] = true;
				dfs(i, j);
			}
		}
	}
	cout << res + 1;//加上起点
    return 0;
}

🍃5. 来几道题试试手

🍃5.1 选数

做题点这里👉 : 洛谷P1036

在这里插入图片描述

这道题其实还是之前讲过的组合型枚举,例如样例中是4个数里边选3个进行组合,只不过最后多了一个求和和素数判断

还用Java来实现一下:

public class Main {
    static int n = 0,k = 0;
    static int cnt = 0;
    static int[] arr = new int[50];
    static int[] res = new int[20];
    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);
        n = sc.nextInt();
        k = sc.nextInt();
        for(int i = 1;i <= n;i++){
            arr[i] = sc.nextInt();
        }
        dfs(1,1);
        System.out.println(cnt);
    }
    public static boolean isPrime(int num){
        for(int i=2;i*i<=num;i++){
            if(num%i==0)
                return false;
        }
        return true;
    }
    public static void dfs(int x, int start){
        if(x == k + 1){
            int sum = 0;
            //求和
            for(int i =1;i <= k;i++){
                sum += res[i];
            }
            //判断素数,方案数+1
            if(isPrime(sum)){
                cnt++;
            }
            return;
        }

        for(int i = start;i <= n;i ++){
            res[x] = arr[i];
            dfs(x + 1,i + 1);
            res[x] = 0;
        }
    }
}

🍃5.2 火柴棒等式

做题点这里👉 : 洛谷1149
在这里插入图片描述

我们来实现一下:

import java.util.Scanner;
public class Main {
    static int[] match = new int[1000];
    static int[] arr = new int[1000];
    static int n = 0, cnt = 0;

    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);
        n = sc.nextInt();
        n -= 4;//等号和加号用的火柴棒
        match[0] = 6;
        match[1] = 2;
        match[2] = 5;
        match[3] = 5;
        match[4] = 4;
        match[5] = 5;
        match[6] = 6;
        match[7] = 3;
        match[8] = 7;
        match[9] = 6;
        //计算10以后的数字用到的火柴帮数量
        for (int i = 10; i < 1000; i++) {
            match[i] = match[i % 10] + match[i / 10];
        }
        dfs(1, 0);
        System.out.println(cnt);
    }

    public static void dfs(int x, int sum) {
    	//超过给出的数量,剪枝
        if (sum > n) {
            return;
        }
        if (x > 3) {
            if (sum == n && arr[1] + arr[2] == arr[3]) {
                cnt++;
            }
            return;
        }
        for (int i = 0; i < 1000; i++) {
            arr[x] = i;
            dfs(x + 1, sum + match[i]);
            arr[x] = 0;
        }
    }
}

在这里插入图片描述

评论 68
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值