数模中的评价模型

前言

  • 本文总结了评价类模型
  • 涉及方法:层次分析法、TOPSIS法、熵权法等
  • 由于无例子,仅可作为初学者的数模评价模型学习提纲

层次分析法

简介与概念

  1. 模型框架:目标层、准则层、方案层
  2. 数量级问题:归一化处理
  3. 重要性问题:根据重要性赋予权重

适用赛题

  1. 评选/排名
  • 目标层很明确
  • 一般题目会提供准则层和相应数据
  1. 决策分析
  • 面临多种方案,需要依据一定的标准选择某一种方案
  • 方案层可能要自己查资料确定
  • 方案层和准则层较为复杂
  • 不同评价模型会得出不同结果

思路

  1. 要保证对数据处理之后,单项排名依旧不变
  2. 归一化处理
  • 对每个指标的数组归一化,该项/指标所有项之和
  • 归一化后,不同指标数量级一致,在每一个指标里排名不变
  1. 区分重要性
  • 指标数值乘以权重再相加
  • 权重是人为主观设定的,这也是层次分析法的缺点
  1. 如何较为科学的设定权重
  • 对指标的重要性进行两两比较,构造判断矩阵,从而求出权重
  • aij是第i个指标相对于第j个指标的重要程度
  • 不一致原因:每次两两比较的过程中暂时忽略了其他因素,导致最后结果可能出现矛盾。理想情况(一致矩阵):aij=aik*akj且各行(列)成倍数关系。只需要和一致矩阵差异不大即可,求出并检验差异的过程称为一致性检验。
  • 一致性检验:计算一致性比例CR,查表,还要调用最大特征值函数
  • 算数平均法求权重:按列归一化,行求和除以n

代码重要点

  1. eig(A)求特征值
  2. matlab导入excel表格,注意指标的多项要有统一数量级

TOPSIS法

简介与概念

  1. 正理想解:集合了所有指标的最优解(负理想解相反)
  2. 确定方法:通过作图看离理想的远近(两点之间距离公式)

适用赛题

  1. 客观评估类型题目
  • 题目提供了足够的评价指标和数据
  • 数据已知,评价指标的类型差异较大
  1. 特点
  • 充分利用原始数据
  • 评价指标较多时,避免了主观性造成的复杂过程
  • 无需数据检验

思路

  1. 数据预处理
  • 并非数据都是越大越好,分为:效益型(大好)、成本型(小好)、区间型(范围好)
  • 区间型:根据数据和最优区间的差异处理,翻译成效益型样式越大越好(同时消除了数量级的差异)
  • 向量规范化(成本和区间):消除了数量级的差异,大小排序不变
  1. 加权处理
  • 直接给每个指标加上权重(查文献)
  1. 理想解
  • 成本型:求正理想解取最小值,负取最大值
  • 效益型:相反
  1. 求距离
  2. 求各方案的综合评价指数

代码重要点

  1. 函数句柄的定义
  2. 加权的计算
  3. sort函数进行排序

熵权法

简介与概念

  1. 熵值:判断某个指标的离散程度,指标离散程度越大,该指标对综合评价的影响越大
  2. 混乱程度低,熵值接近1,赋予低权重

适用赛题

  1. 数据全面,缺少文献或主管依据
  2. 根据数据本身建立评价体系
  3. 追求公平公正

思路

  1. 数据标准化
  • 原因1:正向指标和负向指标
  • 原因2:数量级问题
  • 原因3:公式有对数函数,不允许有负值(0在编码时处理)
  • 正负标准化公式不同
  1. 比重
  2. 熵值
  3. 变异系数
  • 熵值越大,变异系数越小,信息量越小
  1. 权重

代码重要点

  1. readmatrix调用excel文件,要确定需要的范围
  2. 标准化为0时要赋予非0极小值(对数函数不允许有0)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值