前言
- 本文总结了评价类模型
- 涉及方法:层次分析法、TOPSIS法、熵权法等
- 由于无例子,仅可作为初学者的数模评价模型学习提纲
层次分析法
简介与概念
- 模型框架:目标层、准则层、方案层
- 数量级问题:归一化处理
- 重要性问题:根据重要性赋予权重
适用赛题
- 评选/排名
- 目标层很明确
- 一般题目会提供准则层和相应数据
- 决策分析
- 面临多种方案,需要依据一定的标准选择某一种方案
- 方案层可能要自己查资料确定
- 方案层和准则层较为复杂
- 不同评价模型会得出不同结果
思路
- 要保证对数据处理之后,单项排名依旧不变
- 归一化处理
- 对每个指标的数组归一化,该项/指标所有项之和
- 归一化后,不同指标数量级一致,在每一个指标里排名不变
- 区分重要性
- 指标数值乘以权重再相加
- 权重是人为主观设定的,这也是层次分析法的缺点
- 如何较为科学的设定权重
- 对指标的重要性进行两两比较,构造判断矩阵,从而求出权重
- aij是第i个指标相对于第j个指标的重要程度
- 不一致原因:每次两两比较的过程中暂时忽略了其他因素,导致最后结果可能出现矛盾。理想情况(一致矩阵):aij=aik*akj且各行(列)成倍数关系。只需要和一致矩阵差异不大即可,求出并检验差异的过程称为一致性检验。
- 一致性检验:计算一致性比例CR,查表,还要调用最大特征值函数
- 算数平均法求权重:按列归一化,行求和除以n
代码重要点
eig(A)
求特征值- matlab导入excel表格,注意指标的多项要有统一数量级
TOPSIS法
简介与概念
- 正理想解:集合了所有指标的最优解(负理想解相反)
- 确定方法:通过作图看离理想的远近(两点之间距离公式)
适用赛题
- 客观评估类型题目
- 题目提供了足够的评价指标和数据
- 数据已知,评价指标的类型差异较大
- 特点
- 充分利用原始数据
- 评价指标较多时,避免了主观性造成的复杂过程
- 无需数据检验
思路
- 数据预处理
- 并非数据都是越大越好,分为:效益型(大好)、成本型(小好)、区间型(范围好)
- 区间型:根据数据和最优区间的差异处理,翻译成效益型样式越大越好(同时消除了数量级的差异)
- 向量规范化(成本和区间):消除了数量级的差异,大小排序不变
- 加权处理
- 直接给每个指标加上权重(查文献)
- 求理想解
- 成本型:求正理想解取最小值,负取最大值
- 效益型:相反
- 求距离
- 求各方案的综合评价指数
代码重要点
- 函数句柄的定义
- 加权的计算
- sort函数进行排序
熵权法
简介与概念
- 熵值:判断某个指标的离散程度,指标离散程度越大,该指标对综合评价的影响越大
- 混乱程度低,熵值接近1,赋予低权重
适用赛题
- 数据全面,缺少文献或主管依据
- 根据数据本身建立评价体系
- 追求公平公正
思路
- 数据标准化
- 原因1:正向指标和负向指标
- 原因2:数量级问题
- 原因3:公式有对数函数,不允许有负值(0在编码时处理)
- 正负标准化公式不同
- 求比重
- 求熵值
- 求变异系数
- 熵值越大,变异系数越小,信息量越小
- 求权重
代码重要点
- readmatrix调用excel文件,要确定需要的范围
- 标准化为0时要赋予非0极小值(对数函数不允许有0)