题目描述
辰辰是个天资聪颖的孩子,他的梦想是成为世界上最伟大的医师。为此,他想拜附近最有威望的医师为师。医师为了判断他的资质,给他出了一个难题。医师把他带到一个到处都是草药的山洞里对他说:“孩子,这个山洞里有一些不同的草药,采每一株都需要一些时间,每一株也有它自身的价值。我会给你一段时间,在这段时间里,你可以采到一些草药。如果你是一个聪明的孩子,你应该可以让采到的草药的总价值最大。”
如果你是辰辰,你能完成这个任务吗?
输入格式
第一行有 2 22 个整数 T TT(1 ≤ T ≤ 1000 1 \le T \le 10001≤T≤1000)和 M MM(1 ≤ M ≤ 100 1 \le M \le 1001≤M≤100),用一个空格隔开,T TT 代表总共能够用来采药的时间,M MM 代表山洞里的草药的数目。
接下来的 M MM 行每行包括两个在 1 11 到 100 100100 之间(包括 1 11 和 100 100100)的整数,分别表示采摘某株草药的时间和这株草药的价值。
输出格式
输出在规定的时间内可以采到的草药的最大总价值。
题目分析:
这个程序是一个经典的背包问题的解法,使用了动态规划的思想。
首先,输入的背包容量 v
和物品数量 n
。这里假设背包容量和物品数量都是合理的正整数。
然后,使用循环读取每个物品的重量 c[i]
和价值 w[i]
。这里使用了两个数组 c
和 w
分别存储物品的重量和价值,数组下标从 1 到 n。
接下来,使用两层循环来填充一个数组 f
,其中 f[j]
表示背包容量为 j
时能够获得的最大价值。外层循环遍历物品,内层循环逆序遍历背包容量。
在内层循环中,对于每个物品 i 和背包容量 j,如果当前的背包容量 j 大于等于物品 i 的重量 c[i],则可以选择将物品 i 放入背包中。此时,背包容量变为 j - c[i],并且背包的总价值增加 w[i]。我们需要比较不放入物品 i 时的最大价值 f[j]
和放入物品 i 时的最大价值 f[j - c[i]] + w[i]
,取较大值更新 f[j]
。
通过这样的动态规划过程,不断更新数组 f
中的值,直到遍历完所有物品和背包容量。最后,输出数组 f
中背包容量为 v
时的最大价值 f[v]
,即为将背包装满时能够获得的最大价值。
该程序的时间复杂度为 O(nv),其中 n 是物品数量,v 是背包容量。在循环中,对于每个物品和背包容量,只需要进行比较和更新操作。
题目代码:
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
using namespace std;
long long n, m,i,j,v;
long f[1000] = { 0 }, c[1000], w[1000];
int main() {
cin >> v >> n;
for (i = 1; i <= n; i++)
cin >> c[i] >> w[i];
for (i = 1; i <= n; i++)
for (j = v; j >= c[i]; j--)
{
f[j] = max(f[j], f[j - c[i]] + w[i]);
}
cout << f[v];
return 0;
}