动归之采药

题目描述


辰辰是个天资聪颖的孩子,他的梦想是成为世界上最伟大的医师。为此,他想拜附近最有威望的医师为师。医师为了判断他的资质,给他出了一个难题。医师把他带到一个到处都是草药的山洞里对他说:“孩子,这个山洞里有一些不同的草药,采每一株都需要一些时间,每一株也有它自身的价值。我会给你一段时间,在这段时间里,你可以采到一些草药。如果你是一个聪明的孩子,你应该可以让采到的草药的总价值最大。”

如果你是辰辰,你能完成这个任务吗?

输入格式


第一行有 2 22 个整数 T TT(1 ≤ T ≤ 1000 1 \le T \le 10001≤T≤1000)和 M MM(1 ≤ M ≤ 100 1 \le M \le 1001≤M≤100),用一个空格隔开,T TT 代表总共能够用来采药的时间,M MM 代表山洞里的草药的数目。

接下来的 M MM 行每行包括两个在 1 11 到 100 100100 之间(包括 1 11 和 100 100100)的整数,分别表示采摘某株草药的时间和这株草药的价值。

输出格式


输出在规定的时间内可以采到的草药的最大总价值。

题目分析:

这个程序是一个经典的背包问题的解法,使用了动态规划的思想。

首先,输入的背包容量 v 和物品数量 n。这里假设背包容量和物品数量都是合理的正整数。

然后,使用循环读取每个物品的重量 c[i] 和价值 w[i]。这里使用了两个数组 cw 分别存储物品的重量和价值,数组下标从 1 到 n。

接下来,使用两层循环来填充一个数组 f,其中 f[j] 表示背包容量为 j 时能够获得的最大价值。外层循环遍历物品,内层循环逆序遍历背包容量。

在内层循环中,对于每个物品 i 和背包容量 j,如果当前的背包容量 j 大于等于物品 i 的重量 c[i],则可以选择将物品 i 放入背包中。此时,背包容量变为 j - c[i],并且背包的总价值增加 w[i]。我们需要比较不放入物品 i 时的最大价值 f[j] 和放入物品 i 时的最大价值 f[j - c[i]] + w[i],取较大值更新 f[j]

通过这样的动态规划过程,不断更新数组 f 中的值,直到遍历完所有物品和背包容量。最后,输出数组 f 中背包容量为 v 时的最大价值 f[v],即为将背包装满时能够获得的最大价值。

该程序的时间复杂度为 O(nv),其中 n 是物品数量,v 是背包容量。在循环中,对于每个物品和背包容量,只需要进行比较和更新操作。

题目代码:

#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;

using namespace std;

long long  n, m,i,j,v;
long  f[1000] = { 0 }, c[1000], w[1000];

int  main() {
    cin >> v >> n;
    for (i = 1; i <= n; i++)
        cin >> c[i] >> w[i];
    for (i = 1; i <= n; i++)
        for (j = v; j >= c[i]; j--)
        {
            f[j] = max(f[j], f[j - c[i]] + w[i]);
        }
    cout << f[v];
    return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值