贪心与背包的不同
- 贪心是每一步都会得到最优解
- 贪心虽然会带来每一次最优但不一定是整体最优。(比如说C的性价比最高,但是放了C就不能放别的了,总价值反倒不如放A和B的多了)
- 背包可以宏观上整体得到一个最优的结果
题目描述:
辰辰是个天资聪颖的孩子,他的梦想是成为世界上最伟大的医师。为此,他想拜附近最有威望的医师为师。医师为了判断他的资质,给他出了一个难题。医师把他带到一个到处都是草药的山洞里对他说:“孩子,这个山洞里有一些不同的草药,采每一株都需要一些时间,每一株也有它自身的价值。我会给你一段时间,在这段时间里,你可以采到一些草药。如果你是一个聪明的孩子,你应该可以让采到的草药的总价值最大。”
如果你是辰辰,你能完成这个任务吗?
输入格式
第一行有2个整数T(1≤T≤1000)和M(1≤M≤100),用一个空格隔开,T代表总共能够用来采药的时间,M代表山洞里的草药的数目。接下来的M行每行包括两个在1到100之间(包括1和100)的整数,分别表示采摘某株草药的时间和这株草药的价值。
思绪:
- 通过画表格对于理解0-1背包问题很有用
- 橙色行表示背包大小;黄色列表示物体的大小;绿色列表示每个物体对应的价值;灰色的行列用于初始化边界条件
- 然后一行一行填完表,如下图所示:
填表过程:
- 设data[i][j]表示前i件物品 总重量不超过j的最大价值 可得出状态转移方程 :data[i][j] = MAX(data[i - 1][j], data[i - 1][j - weight[i]] + value[i])
- 对第 i 件物品,有2种前状态:
a. 选择第 i 件物品,则 data[i][j] = data[i-1][ j-weight[i] ] + value[i]
b. 不选择第 i 件物品,则 data[i][j] = data[i-1][j]
解法一:
代码如下
#define _CRT_SECURE_NO_WARNINGS
#define MAX(a, b) ( (a) > (b) ? (a) : (b))
#include<stdio.h>
int main(){
int data[101][1001] = { 0 };
int size, n;
int weight[101] = { 0 };
int value[101] = { 0 };
int i, j;
scanf("%d%d", &size, &n);//背包大小,物品种类(决定了表格的大小)
for (i = 1; i <= n; i++){
scanf("%d%d", &weight[i], &value[i]);//arr[i] = *(arr+i) 前面是地址里的内容,后面是地址
}
for (i = 1; i <= n; i++){
for (j = 1; j <= size; j++){
if (j < weight[i]){
data[i][j] = data[i - 1][j];
}
else{
data[i][j] = MAX(data[i - 1][j], data[i - 1][j - weight[i]] + value[i]);
}
}
}
printf("%d", data[n][size]);
return 0;
}
代码生成图:
对代码空间的优化(一维数组)
解法二:
在求状态data[j]的时候,data[j - weight[i]] 还不能被更新过,所以data[j - weight[i]] 要放在data[j]后更新,采用递减循环的方式实现这个功能。
代码如下:
#define _CRT_SECURE_NO_WARNINGS
#define MAX(a, b) ( (a) > (b) ? (a) : (b))
#include<stdio.h>
int main(){
int data[1001] = { 0 };
int size, n;
int weight[101] = { 0 };
int value[101] = { 0 };
int i, j;
scanf("%d%d", &size, &n);//背包大小,物品种类(决定了表格的大小)
for (i = 1; i <= n; i++){
scanf("%d%d", weight + i, value + i);//arr[i] = *(arr+i) 前面是地址里的内容,后面是地址
}
for (i = 1; i <= n; i++){
for (j = size; j >= weight[i]; j--){
data[j] = MAX(data[j], data[j - weight[i]] + value[i]);
}
}
printf("%d", data[size]);
return 0;
}
0-1背包:
有n件物品和容量为m的背包,给出i件物品的重量以及价值,求解让装入背包的物品重量不超过背包容量,且价值最大
特点:每个物品只有一件供你选择放还是不放(这是最简单的背包问题)
上述问题就是一个0-1背包问题
核心代码:
for (i = 1; i <= n; i++){
for (j = size; j >= weight[i]; j--){
data[j] = MAX(data[j], data[j - weight[i]] + value[i]);
}
}
完全背包:
有n件物品和容量为m的背包,给出i件物品的重量以及价值,求解让装入背包的物品重量不超过背包容量,且价值最大
特点:每个物品可以无限选用(唯一与0-1背包的不同)
将01背包的逆序转化为顺序即可
内层循环顺序进行的话,就代表了在data[j - weight[i]] 体积的情况下,里面还存有c[i]这个物品,这样对于同一件物品,会计算多次,直到有其他物品加入满足最优解大于一件被计算多次后的值为止。
核心代码:
for (i = 1; i <= n; i++){
for (j = weight[i]; j <= size; j++){
data[j] = MAX(data[j], data[j - weight[i]] + value[i]);
}
}