动归:0-1背包与完全背包(洛谷P1048 采药)

45 篇文章 2 订阅
4 篇文章 0 订阅
贪心与背包的不同
  • 贪心是每一步都会得到最优解
  • 贪心虽然会带来每一次最优但不一定是整体最优。(比如说C的性价比最高,但是放了C就不能放别的了,总价值反倒不如放A和B的多了)
  • 背包可以宏观上整体得到一个最优的结果
题目描述:

辰辰是个天资聪颖的孩子,他的梦想是成为世界上最伟大的医师。为此,他想拜附近最有威望的医师为师。医师为了判断他的资质,给他出了一个难题。医师把他带到一个到处都是草药的山洞里对他说:“孩子,这个山洞里有一些不同的草药,采每一株都需要一些时间,每一株也有它自身的价值。我会给你一段时间,在这段时间里,你可以采到一些草药。如果你是一个聪明的孩子,你应该可以让采到的草药的总价值最大。”

如果你是辰辰,你能完成这个任务吗?

输入格式

第一行有2个整数T(1≤T≤1000)和M(1≤M≤100),用一个空格隔开,T代表总共能够用来采药的时间,M代表山洞里的草药的数目。接下来的M行每行包括两个在1到100之间(包括1和100)的整数,分别表示采摘某株草药的时间和这株草药的价值。

思绪:

  • 通过画表格对于理解0-1背包问题很有用
  • 橙色行表示背包大小;黄色列表示物体的大小;绿色列表示每个物体对应的价值;灰色的行列用于初始化边界条件
  • 然后一行一行填完表,如下图所示:

在这里插入图片描述

填表过程:

  1. 设data[i][j]表示前i件物品 总重量不超过j的最大价值 可得出状态转移方程 :data[i][j] = MAX(data[i - 1][j], data[i - 1][j - weight[i]] + value[i])
  2. 对第 i 件物品,有2种前状态:

a. 选择第 i 件物品,则 data[i][j] = data[i-1][ j-weight[i] ] + value[i]

b. 不选择第 i 件物品,则 data[i][j] = data[i-1][j]

解法一:

代码如下

#define _CRT_SECURE_NO_WARNINGS
#define MAX(a, b) ( (a) > (b) ? (a) : (b))

#include<stdio.h>

int main(){
	int data[101][1001] = { 0 };
	int size, n;
	int weight[101] = { 0 };
	int value[101] = { 0 };
	int i, j;

	scanf("%d%d", &size, &n);//背包大小,物品种类(决定了表格的大小)
	
	for (i = 1; i <= n; i++){
		scanf("%d%d", &weight[i], &value[i]);//arr[i] = *(arr+i) 前面是地址里的内容,后面是地址
	}
	for (i = 1; i <= n; i++){
		for (j = 1; j <= size; j++){
			if (j < weight[i]){
				data[i][j] = data[i - 1][j];
			}
			else{
				data[i][j] = MAX(data[i - 1][j], data[i - 1][j - weight[i]] + value[i]);
			}
		}
	}
	printf("%d", data[n][size]);

	return 0;
}

代码生成图:
在这里插入图片描述

对代码空间的优化(一维数组)

解法二:

在求状态data[j]的时候,data[j - weight[i]] 还不能被更新过,所以data[j - weight[i]] 要放在data[j]后更新,采用递减循环的方式实现这个功能。

代码如下:

#define _CRT_SECURE_NO_WARNINGS
#define MAX(a, b) ( (a) > (b) ? (a) : (b))

#include<stdio.h>

int main(){
	int data[1001] = { 0 };
	int size, n;
	int weight[101] = { 0 };
	int value[101] = { 0 };
	int i, j;

	scanf("%d%d", &size, &n);//背包大小,物品种类(决定了表格的大小)

	for (i = 1; i <= n; i++){
		scanf("%d%d", weight + i, value + i);//arr[i] = *(arr+i) 前面是地址里的内容,后面是地址
	}
	for (i = 1; i <= n; i++){
		for (j = size; j >= weight[i]; j--){
			data[j] = MAX(data[j], data[j - weight[i]] + value[i]);
		}
	}
	printf("%d", data[size]);

	return 0;
}
0-1背包:

有n件物品和容量为m的背包,给出i件物品的重量以及价值,求解让装入背包的物品重量不超过背包容量,且价值最大
特点:每个物品只有一件供你选择放还是不放(这是最简单的背包问题)

上述问题就是一个0-1背包问题

核心代码:

for (i = 1; i <= n; i++){
	for (j = size; j >= weight[i]; j--){
		data[j] = MAX(data[j], data[j - weight[i]] + value[i]);
	}
}
完全背包:

有n件物品和容量为m的背包,给出i件物品的重量以及价值,求解让装入背包的物品重量不超过背包容量,且价值最大
特点:每个物品可以无限选用(唯一与0-1背包的不同)

将01背包的逆序转化为顺序即可

内层循环顺序进行的话,就代表了在data[j - weight[i]] 体积的情况下,里面还存有c[i]这个物品,这样对于同一件物品,会计算多次,直到有其他物品加入满足最优解大于一件被计算多次后的值为止。

核心代码:

for (i = 1; i <= n; i++){
	for (j = weight[i]; j <= size; j++){
		data[j] = MAX(data[j], data[j - weight[i]] + value[i]);
	}
}
买书问题 dp实现 题目:买书 有一书店引进了一套书,共有3卷,每卷书定价是60元,书店为了搞促销,推出一个活动,活动如下: 如果单独购买其中一卷,那么可以打9.5折。 如果同时购买两卷不同的,那么可以打9折。 如果同时购买三卷不同的,那么可以打8.5折。 如果小明希望购买第1卷x本,第2卷y本,第3卷z本,那么至少需要多少钱呢?(x、y、z为三个已知整数)。 1、过程为一次一次的购买,每一次购买也许只买一本(这有三种方案),或者买两本(这也有三种方案), 或者三本一起买(这有一种方案),最后直到买完所有需要的书。 2、最后一步我必然会在7种购买方案中选择一种,因此我要在7种购买方案中选择一个最佳情况。 3、子问题是,我选择了某个方案后,如何使得购买剩余的书能用最少的钱?并且这个选择不会使得剩余的书为负数 。母问题和子问题都是给定三卷书的购买量,求最少需要用的钱,所以有"子问题重叠",问题中三个购买量设置为参数, 分别为i、j、k。 4、的确符合。 5、边界是一次购买就可以买完所有的书,处理方式请读者自己考虑。 6、每次选择最多有7种方案,并且不会同时实施其中多种,因此方案的选择互不影响,所以有"子问题独立"。 7、我可以用minMoney[i][j][k]来保存购买第1卷i本,第2卷j本,第3卷k本时所需的最少金钱。 8、共有x * y * z个问题,每个问题面对7种选择,时间为:O( x * y * z * 7) = O( x * y* z )。 9、用函数MinMoney(i,j,k)来表示购买第1卷i本,第2卷j本,第3卷k本时所需的最少金钱,那么有: MinMoney(i,j,k)=min(s1,s2,s3,s4,s5,s6,s7),其中s1,s2,s3,s4,s5,s6,s7分别为对应的7种方案使用的最少金钱: s1 = 60 * 0.95 + MinMoney(i-1,j,k) s2 = 60 * 0.95 + MinMoney(i,j-1,k) s3 = 60 * 0.95 + MinMoney(i,j,k-1) s4 = (60 + 60) * 0.9 + MinMoney(i-1,j-1,k) s5 = (60 + 60) * 0.9 + MinMoney(i-1,j,k-1) s6 = (60 + 60) * 0.9 + MinMoney(i-1,j,k-1) s7 = (60 + 60 + 60) * 0.85 + MinMoney(i-1,j-1,k-1)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值