“Datawhale AI夏令营“ 第二届世界科学智能大赛物质科学赛道:催化反应产率预测(对官方发布的baseline进行学习)

Import dependency(需要的环境依赖) 

表2:化学反应也可以用SMILES表示,用“>>”连接产物即可。

由于Reactant1,Reactant2,Product,Additive,Solvent都是由SMILES表示。所以,可以使用rdkit工具直接提取SMILES的分子指纹(向量),作为特征。

Morgan fingerprint 

位向量(bit ector)形式的特征,即由0,1组成的向量。

RDKit 

化学信息学中主要的工具,开源。网址:http://www.rdkit.org,支持WIN\MAC\Linux,可以被python、Java、C调用。几乎所有的与化学信息学相关的内容都可以在上面找到。

SMILES 

SMILES,全称是Simplified Molecular Input Line Entry System,是一种将化学分子用ASCII字符表示的方法,是化学信息学领域非常重要的工具。

表1:一些常见的化学结构用SMILES表示。

  • Python3
  • pandas
  • scikit-learn
  • rdkit
    !pip install pandas
    !pip install -U scikit-learn
    !pip install rdkit
    # 首先,导入库
    import pickle
    import pandas as pd
    from tqdm import tqdm
    from sklearn.ensemble import RandomForestRegressor
    from rdkit.Chem import rdMolDescriptors
    from rdkit import RDLogger,Chem
    import numpy as np
    RDLogger.DisableLog('rdApp.*') 

    特征提取 

    官方发布的数据是对化学分子的SMILES表达式,具体来说,有rxnid,Reactant1,Reactant2,Product,Additive,Solvent,Yield字段。其中:

  • rxnid 对数据的id标识,无实际意义
  • Reactant1 反应物1
  • Reactant2 反应物2
  • Product 产物
  • Additive 添加剂(包括催化剂catalyst等辅助反应物合成但是不对产物贡献原子的部分)
  • Solvent 溶剂
  • nt1,Reactant2,Product,Additive,Solvent都是由SMILES表示。
  • Yield 产率 其中Reacta
    def mfgen(mol,nBits=2048, radius=2):
     
        # 返回分子的位向量形式的Morgan fingerprint
        fp = rdMolDescriptors.GetMorganFingerprintAsBitVect(mol,radius=radius,nBits=nBits)
        return np.array(list(map(eval,list(fp.ToBitString()))))
    
    # 加载数据
    def vec_cpd_lst(smi_lst):
        smi_set = list(set(smi_lst))
        smi_vec_map = {}
        for smi in tqdm(smi_set): # tqdm:显示进度条
            mol = Chem.MolFromSmiles(smi)
            smi_vec_map[smi] = mfgen(mol)
        smi_vec_map[''] = np.zeros(2048)
        
        vec_lst = [smi_vec_map[smi] for smi in smi_lst]
        return np.array(vec_lst)

数据导入

dataset_dir = '../dataset'   # # 注:如果是在AI Studio上,将这里改为'dataset'

train_df = pd.read_csv(f'{dataset_dir}/round1_train_data.csv')
test_df = pd.read_csv(f'{dataset_dir}/round1_test_data.csv')

print(f'Training set size: {len(train_df)}, test set size: {len(test_df)}')

 数据预处理

# 从csv中读取数据
train_rct1_smi = train_df['Reactant1'].to_list()
train_rct2_smi = train_df['Reactant2'].to_list()
train_add_smi = train_df['Additive'].to_list()
train_sol_smi = train_df['Solvent'].to_list()

# 将SMILES转化为分子指纹
train_rct1_fp = vec_cpd_lst(train_rct1_smi)
train_rct2_fp = vec_cpd_lst(train_rct2_smi)
train_add_fp = vec_cpd_lst(train_add_smi)
train_sol_fp = vec_cpd_lst(train_sol_smi)
# 在dim=1维度进行拼接。即:将一条数据的Reactant1,Reactant2,Product,Additive,Solvent字段的morgan fingerprint拼接为一个向量。
train_x = np.concatenate([train_rct1_fp,train_rct2_fp,train_add_fp,train_sol_fp],axis=1)
train_y = train_df['Yield'].to_numpy()

# 测试集也进行同样的操作
test_rct1_smi = test_df['Reactant1'].to_list()
test_rct2_smi = test_df['Reactant2'].to_list()
test_add_smi = test_df['Additive'].to_list()
test_sol_smi = test_df['Solvent'].to_list()

test_rct1_fp = vec_cpd_lst(test_rct1_smi)
test_rct2_fp = vec_cpd_lst(test_rct2_smi)
test_add_fp = vec_cpd_lst(test_add_smi)
test_sol_fp = vec_cpd_lst(test_sol_smi)
test_x = np.concatenate([test_rct1_fp,test_rct2_fp,test_add_fp,test_sol_fp],axis=1)

 模型构建

使用随机森林进行建模。

sklearn (scikit-learn) 

是一个非常广泛使用的开源机器学习库,基于Python,建立在NumPy、SciPy、Pandas和Matplotlib等数据处理和分析的库之上。
它涵盖了几乎所有主流机器学习算法,包括分类、回归、聚类、降维等。API设计亲民,整个使用简单易上手,非常适合作为机器学习入门的工具。 官网:scikit-learn: machine learning in Python — scikit-learn 1.5.1 documentation

在sklearn中,几乎所有的机器学习的流程是:

  1. 实例化模型(并指定重要参数);
  2. model.fit(x, y) 训练模型;

随机森林 

参数解释:

  • n_estimators=10: 决策树的个数,越多越好;但是越多意味着计算开销越大;
  • max_depth: (default=None)设置树的最大深度,默认为None;
  • min_samples_split: 根据属性划分节点时,最少的样本数;
  • min_samples_leaf: 叶子节点最少的样本数;
  • n_jobs=1: 并行job个数,-1表示使用所有cpu进行并行计算。 

官方给的n_estimators,max_depth参数都为10 ,但是实际测试效果不佳,评分仅为0.19左右,

直接采用笨方法-试错法,逐步提高深度后发现为50为最佳,之后出现过拟合的情况

# Model fitting
model = RandomForestRegressor(n_estimators=55,max_depth=55,min_samples_split=2,min_samples_leaf=1,n_jobs=-1) # 实例化模型,并指定重要参数
model.fit(train_x,train_y) # 训练模型
# Model fitting
model = RandomForestRegressor(n_estimators=55,max_depth=55,min_samples_split=2,min_samples_leaf=1,n_jobs=-1) # 实例化模型,并指定重要参数
model.fit(train_x,train_y) # 训练模型

# 保存模型
with open('./random_forest_model.pkl', 'wb') as file:
    pickle.dump(model, file)

# 加载模型
with open('random_forest_model.pkl', 'rb') as file:
    loaded_model = pickle.load(file)

# 预测\推理
test_pred = loaded_model.predict(test_x)

生成赛题要求的submit文件

ans_str_lst = ['rxnid,Yield']
for idx,y in enumerate(test_pred):
    ans_str_lst.append(f'test{idx+1},{y:.4f}')
with open('./submit.txt','w') as fw:
    fw.writelines('\n'.join(ans_str_lst))

 什么?为什么都是0.3,因为平台限制3次,我开个小号不过分吧,桀桀桀桀桀。。。。

  • 16
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 保险反欺诈预测是金融数据分析的重要应用之一。该赛题是基于保险数据集,旨在通过分析和挖掘数据特征,建立一个反欺诈预测模型的基准线。 首先,我们需要对保险数据集进行预处理和清洗,包括处理缺失值、异常值和重复值等。然后,我们可以进行特征工程,提取出与反欺诈相关的特征。常见的特征可以包括被保险人的年龄、职业、保险金额、历史理赔记录等信息。 接下来,我们可以选择合适的机器学习算法来构建预测模型。常用的算法包括逻辑回归、决策树、随机森林等。在构建模型之前,我们需要将数据集划分为训练集和测试集,用训练集进行模型训练,然后用测试集评估模型的性能。 评估模型的性能可以使用常见的指标,如准确、精确、召回和F1值等。这些指标可以帮助我们评估模型的预测能力和误判。 最后,我们需要对模型进行优化和改进。可以通过调整模型的参数、增加更多的特征或者尝试其他的机器学习算法来提高模型的预测性能。同时,对于不平衡样本问题,可以采用欠采样、过采样或者集成学习等方法来解决。 总结起来,保险反欺诈预测baseline建立包括数据预处理、特征工程、模型构建和优化等步骤。通过不断地优化和改进,我们可以建立一个有效的反欺诈预测模型,提高保险公司的风险控制能力。 ### 回答2: 金融数据分析赛题2: 保险反欺诈预测baseline是指在保险领域中,利用金融数据分析的方法来预测保险反欺诈的基础模型。 保险反欺诈预测是指利用大数据和机器学习算法等技术手段,对保险投保人的风险进行分析和预测,从而提高保险公司的风险管理能力,减少保险欺诈行为。 基于金融数据分析的保险反欺诈预测baseline主要包括以下几个步骤: 1. 数据收集:收集与保险欺诈相关的数据,包括投保人的基本信息、历史保险记录、理赔记录等,以及其他与保险欺诈相关的非保险数据。 2. 数据清洗和预处理:对收集到的数据进行清洗和预处理,包括去除异常值、缺失值处理、数据标准化等。确保数据的质量和可用性。 3. 特征工程:根据业务需求和领域知识,对数据进行特征提取和构建。包括基本特征、组合特征和衍生特征等。 4. 模型选择和训练:选择适用于保险反欺诈预测的机器学习模型,例如逻辑回归、决策树、支持向量机等。通过训练数据拟合模型,并进行调参和验证,得到最佳模型。 5. 模型评估和优化:利用评价指标如准确、召回、F1值等对模型进行评估,并进行模型优化和调整,提高模型的预测性能。 6. 模型应用和部署:将优化后的模型应用于实际场景,进行实时预测和反欺诈行为识别。并对模型进行监测和更新,保持模型的准确性和稳定性。 基于以上步骤,金融数据分析赛题2的保险反欺诈预测baseline可以建立一个初步的保险反欺诈预测模型,并得到一组基本的预测结果。然后可以根据比赛的具体要求和模型效果进行进一步的改进和优化,提高保险反欺诈预测的准确性和稳定性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值