Datawhae AI夏令营:世界科学智能大赛物质科学赛

第二届世界科学智能大赛物质科学赛道:催化反应产率预测

大赛背景

为推动科学智能领域创新发展,在上海市政府的指导下,上海科学智能研究院、复旦大学联合阿里云在上智院·天池平台发布“第二届世界科学智能大赛”。大赛设置生命科学、物质科学、地球科学、社会科学、逻辑推理五大赛道,配有高额奖金池,面向全球人才开放,旨在推进科学智能技术创新,挖掘顶尖创新团队,构建科学智能生态,激发科学智能发展新动能。

大赛共设五大赛道:

赛题背景

随着社会经济的不断发展,人们对各种材料、药物及精细化学品的需求日益增长。催化合成作为这些物质制备的关键技术,其重要性愈加显著。

科研人员和产业界致力于开发新的催化合成方法,普遍追求的目标是以高产率获取目标产物,即开发高活性的催化反应体系,以提高原子经济性,减少资源浪费和环境污染。然而,高活性催化反应体系的开发通常需要对催化剂和溶剂等多种反应条件进行详尽探索,这使得其成为一项时间和资源消耗极大的任务。目前,反应条件的筛选大多依赖于经验判断和偶然发现,使得催化反应条件的优化过程既费时又费力,这严重限制了新的高效催化合成策略的发展。

通过利用历史催化反应数据,并结合AI技术,可以预测新催化反应的产率,从而有效地帮助科研人员和产业界加快高活性反应条件的筛选速度,减少资源与人力的消耗,促进新物质的创造与合成。

baseline:

# 首先,导入库
import pickle
import pandas as pd
from tqdm import tqdm
from sklearn.ensemble import RandomForestRegressor
from rdkit.Chem import rdMolDescriptors
from rdkit import RDLogger,Chem
import numpy as np
RDLogger.DisableLog('rdApp.*')

特征提取

官方发布的数据是对化学分子的SMILES表达式,具体来说,有rxnid,Reactant1,Reactant2,Product,Additive,Solvent,Yield字段。其中:

参数解释:

随机森林

我们除了使用随机森林,还可以使用机器学习常用的模型算法,xgboost,svm等

  • rxnid 对数据的id标识,无实际意义
  • Reactant1 反应物1
  • Reactant2 反应物2
  • Product 产物
  • Additive 添加剂(包括催化剂catalyst等辅助反应物合成但是不对产物贡献原子的部分)
  • Solvent 溶剂
  • Yield 产率 其中Reactant1,Reactant2,Product,Additive,Solvent都是由SMILES表示。
  • def mfgen(mol,nBits=2048, radius=2):
        '''
        Parameters
        ----------
        mol : mol
            RDKit mol object.
        nBits : int
            Number of bits for the fingerprint.
        radius : int
            Radius of the Morgan fingerprint.
        Returns
        -------
        mf_desc_map : ndarray
            ndarray of molecular fingerprint descriptors.
        '''
        # 返回分子的位向量形式的Morgan fingerprint
        fp = rdMolDescriptors.GetMorganFingerprintAsBitVect(mol,radius=radius,nBits=nBits)
        return np.array(list(map(eval,list(fp.ToBitString()))))

    # 加载数据
    def vec_cpd_lst(smi_lst):
        smi_set = list(set(smi_lst))
        smi_vec_map = {}
        for smi in tqdm(smi_set): # tqdm:显示进度条
            mol = Chem.MolFromSmiles(smi)
            smi_vec_map[smi] = mfgen(mol)
        smi_vec_map[''] = np.zeros(2048)
        
        vec_lst = [smi_vec_map[smi] for smi in smi_lst]
        return np.array(vec_lst)

  • dataset_dir = '../dataset'   # # 注:如果是在AI Studio上,将这里改为'dataset'

    train_df = pd.read_csv(f'{dataset_dir}/round1_train_data.csv')
    test_df = pd.read_csv(f'{dataset_dir}/round1_test_data.csv')

    print(f'Training set size: {len(train_df)}, test set size: {len(test_df)}')

  • # 从csv中读取数据
    train_rct1_smi = train_df['Reactant1'].to_list()
    train_rct2_smi = train_df['Reactant2'].to_list()
    train_add_smi = train_df['Additive'].to_list()
    train_sol_smi = train_df['Solvent'].to_list()

    # 将SMILES转化为分子指纹
    train_rct1_fp = vec_cpd_lst(train_rct1_smi)
    train_rct2_fp = vec_cpd_lst(train_rct2_smi)
    train_add_fp = vec_cpd_lst(train_add_smi)
    train_sol_fp = vec_cpd_lst(train_sol_smi)
    # 在dim=1维度进行拼接。即:将一条数据的Reactant1,Reactant2,Product,Additive,Solvent字段的morgan fingerprint拼接为一个向量。
    train_x = np.concatenate([train_rct1_fp,train_rct2_fp,train_add_fp,train_sol_fp],axis=1)
    train_y = train_df['Yield'].to_numpy()

    # 测试集也进行同样的操作
    test_rct1_smi = test_df['Reactant1'].to_list()
    test_rct2_smi = test_df['Reactant2'].to_list()
    test_add_smi = test_df['Additive'].to_list()
    test_sol_smi = test_df['Solvent'].to_list()

    test_rct1_fp = vec_cpd_lst(test_rct1_smi)
    test_rct2_fp = vec_cpd_lst(test_rct2_smi)
    test_add_fp = vec_cpd_lst(test_add_smi)
    test_sol_fp = vec_cpd_lst(test_sol_smi)
    test_x = np.concatenate([test_rct1_fp,test_rct2_fp,test_add_fp,test_sol_fp],axis=1)

  • 使用随机森林进行建模。

    sklearn (scikit-learn)

    是一个非常广泛使用的开源机器学习库,基于Python,建立在NumPy、SciPy、Pandas和Matplotlib等数据处理和分析的库之上。
    它涵盖了几乎所有主流机器学习算法,包括分类、回归、聚类、降维等。API设计亲民,整个使用简单易上手,非常适合作为机器学习入门的工具。 官网:scikit-learn: machine learning in Python — scikit-learn 1.5.1 documentation

    在sklearn中,几乎所有的机器学习的流程是:

  • 实例化模型(并指定重要参数);
  • model.fit(x, y) 训练模型;
  • n_estimators=10: 决策树的个数,越多越好;但是越多意味着计算开销越大;
  • max_depth: (default=None)设置树的最大深度,默认为None;
  • min_samples_split: 根据属性划分节点时,最少的样本数;
  • min_samples_leaf: 叶子节点最少的样本数;
  • n_jobs=1: 并行job个数,-1表示使用所有cpu进行并行计算。

model = RandomForestRegressor(n_estimators=10,max_depth=10,min_samples_split=2,min_samples_leaf=1,n_jobs=-1) # 实例化模型,并指定重要参数

model.fit(train_x,train_y) # 训练模型

# 保存模型

with open('./random_forest_model.pkl', 'wb') as file:

    pickle.dump(model, file)

# 加载模型

with open('random_forest_model.pkl', 'rb') as file:

    loaded_model = pickle.load(file)

# 预测\推理

test_pred = loaded_model.predict(test_x)

ans_str_lst = ['rxnid,Yield']

for idx,y in enumerate(test_pred):

    ans_str_lst.append(f'test{idx+1},{y:.4f}')

with open('./submit.txt','w') as fw:

    fw.writelines('\n'.join(ans_str_lst))

最后生成了一个submit.txt文件,我们在

页面提交结果,分数达到分数:0.1926

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值