数字三角形(题解)

该问题是一个典型的动态规划问题,通过建立二维数组存储到达每个位置的最大路径和。初始时,数组值设为负无穷大,然后从第二层开始,对于每个位置,将其上两位置的最大值加当前值更新到数组中。最后,遍历最后一层找到最大值作为答案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

给定一个如下图所示的数字三角形,从顶部出发,在每一结点可以选择移动至其左下方的结点或移动至其右下方的结点,一直走到底层,要求找出一条路径,使路径上的数字的和最大。

        7
      3   8
    8   1   0
  2   7   4   4
4   5   2   6   5

输入格式

第一行包含整数 n ,表示数字三角形的层数

接下来 n 行,每行包含若干整数,其中第 i 行表示数字三角形第 i 层包含的整数。

输出格式

输出一个整数,表示最大的路径数字和。

输入输出样例

输入 

5
7
3 8
8 1 0 
2 7 4 4
4 5 2 6 5

输出 

30

说明/提示

1 ≤ n ≤ 500

−10000 ≤ 三角形中的整数 ≤ 10000

 思路:

 1、需要建立一个二维数组(当然也可以用两个,略……)来表示到某个位置的最优解,即a[3][2]就表示从a[1][1]走到a[3][2]的最优解;

2、初始化数组值,因为三角形中的整数可以是负数,所以需要将数组值初始化为无穷小值;

3、计算方法:a[i][j] = max(a[i - 1][j - 1], a[i - 1][j]) + a[i][j];

ac代码:

#include<iostream>
using namespace std;
const int INF = 1e9;    //定义无穷量
int a[510][510];

int main()
{
	int n, ans = -INF;
	cin >> n;
    //初始化,必须有
	for(int i = 0; i < n; i++)
		for(int j = 0; j < n; j++)
			a[i][j] = -INF;
	
    //输入下标一定要从1开始
	for(int i = 1; i <= n; i++)
		for(int j = 1; j <= i; j++)
			cin >> a[i][j];
			
	for(int i = 2; i <= n; i++)
		for(int j = 1; j <= i; j++)
			a[i][j] = max(a[i-1][j-1], a[i-1][j]) + a[i][j]; 
			
    //判断查找底层最优解的结果
	for(int j = 1; j <= n; j++)
		ans = max(ans, a[n][j]);
		
	cout << ans;
	
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值