题目描述
给定一个如下图所示的数字三角形,从顶部出发,在每一结点可以选择移动至其左下方的结点或移动至其右下方的结点,一直走到底层,要求找出一条路径,使路径上的数字的和最大。
7 3 8 8 1 0 2 7 4 4 4 5 2 6 5
输入格式
第一行包含整数 n ,表示数字三角形的层数
接下来 n 行,每行包含若干整数,其中第 i 行表示数字三角形第 i 层包含的整数。
输出格式
输出一个整数,表示最大的路径数字和。
输入输出样例
输入
5 7 3 8 8 1 0 2 7 4 4 4 5 2 6 5输出
30说明/提示
1 ≤ n ≤ 500
−10000 ≤ 三角形中的整数 ≤ 10000
思路:
1、需要建立一个二维数组(当然也可以用两个,略……)来表示到某个位置的最优解,即a[3][2]就表示从a[1][1]走到a[3][2]的最优解;
2、初始化数组值,因为三角形中的整数可以是负数,所以需要将数组值初始化为无穷小值;
3、计算方法:a[i][j] = max(a[i - 1][j - 1], a[i - 1][j]) + a[i][j];
ac代码:
#include<iostream>
using namespace std;
const int INF = 1e9; //定义无穷量
int a[510][510];
int main()
{
int n, ans = -INF;
cin >> n;
//初始化,必须有
for(int i = 0; i < n; i++)
for(int j = 0; j < n; j++)
a[i][j] = -INF;
//输入下标一定要从1开始
for(int i = 1; i <= n; i++)
for(int j = 1; j <= i; j++)
cin >> a[i][j];
for(int i = 2; i <= n; i++)
for(int j = 1; j <= i; j++)
a[i][j] = max(a[i-1][j-1], a[i-1][j]) + a[i][j];
//判断查找底层最优解的结果
for(int j = 1; j <= n; j++)
ans = max(ans, a[n][j]);
cout << ans;
return 0;
}