我很期待与大家分享我在 AI 智能体中所看到的。我认为(大模型+AI智能体)是一个令人兴奋的趋势,每个 AI 从业者都应该关注这个趋势。
我要分享的是AI智能体。现在,我们大多数人使用大型语言模型的方式是:在对话框中输入提示并生成答案。这类似于让一个人根据提示写出相关文章。AI大模型在不使用退格键的前提下,完成这样的任务仍然非常出色。
智能体工作流包括:使用AI大模型撰写论文大纲,按需联网查资料,写初稿并审阅,思考并修改需要改进的部分,然后继续迭代此过程。这种工作流程使迭代变得更加容易,可以通过AI大模型的思考和修改,多次迭代优化文章。
很多人都没有意识到的是,这么做的效果好得多。其实我自己也很惊讶。对于它们的工作决策流程,以及它们优秀的表现。除了这些个案研究,我的团队也分析了一些数据,使用名为 HumanEval 的编程评估基准。这是 OpenAI 几年前发布的。这上面有一些编程问题,比如给定一个非空整数列表,返回位于偶数位置的所有奇数元素的和。AI 生成的答案是像这样的代码片段。
如今,很多人使用零样本提示,例如让 AI 编写代码并运行。但事实上,直接使用 GPT-3.5 的准确率只有 48%,而 GPT-4 则达到了 67%。但如果在智能体工作流中使用 GPT-3.5,其表现可能会更好,甚至超过 GPT-4。这说明在特定工作流中,GPT-3.5 的性能可以超过 GPT-4。这是一个值得我们关注的信号。
人们围绕智能体及其任务进行了大量讨论,并产生了众多咨询报告。我想分享我在智能体领域观察到的常见设计模式。这是一个充满混乱和变革的空间,众多研究和活动正在进行。我尝试对其进行更具体的分类和讨论。
在演讲中,吴恩达介绍了 AI 智能体工作流的四种设计模式:
-
反思(Reflection):LLM 检查自己的工作,以提出改进方法。
-
工具使用(Tool use):LLM 拥有网络搜索、代码执行或任何其他功能来帮助其收集信息、采取行动或处理数据。
-
规划(Planning):LLM 提出并执行一个多步骤计划来实现目标(例如,撰写论文大纲、进行在线研究,然后撰写草稿…)。
-
多智能体协作(Multi-agent collaboration):多个 AI 智能体一起工作,分配任务并讨论和辩论想法,以提出比单个智能体更好的解决方案。
Reflection是一种有效的工具,与广泛认可的“tool use”一样强大。我使用它们时,常能取得良好效果。尽管规划和多智能体协作是新兴技术,其效果有时令人震惊,但目前尚不可靠。
接下来,我将解释四种设计模式。若你们或你们的工程师采用这些模式,我相信生产力将得到提升。
首先是reflection。例如,请系统编写给定任务的代码,然后利用代码智能体检查代码的正确性、效率等。根据提示,大模型可能发现代码中的问题,如第五行的bug,并提供改进建议。这种方法值得尝试。
关于tool use,如果单元测试未通过,通过对话可找出原因并尝试修正。对于技术兴趣者,我在PPT底部提供了推荐阅读资料。再谈多智能体系统,它可视为单个代码智能体,通过对话进行互动。一个自然演变是单个编程智能体,包含编码和评价两个智能体,背后可能使用同一大模型但提示不同。这种工作流易实现且通用,能显著提升大型语言模型性能。
第二种设计模式是tool use(工具使用)。Copilot和GPT-4都是基于大模型的系统使用工具。Copilot通过上网检索解决问题,而GPT-4则能生成并运行代码。人们使用多种工具分析、收集信息以采取行动、提高个人生产力。早期tool use的工作多在计算机视觉社区,因为以前的大型语言模型无法处理图像,所以只能通过函数调用操作图像,如生成图像或目标检测等。tool use扩展了大型语言模型的能力。
关于planning(规划),对于未深入接触过规划算法的人来说,可能会觉得ChatGPT等AI技术令人惊叹。实际上,规划算法同样令人印象深刻。在现场演示中,即使AI智能体偶尔失败,它们也能迅速重新规划路径,这同样令人惊叹。例如,在HuggingGPT论文改编的例子中,AI智能体可以根据指令生成一张女孩看书的图像,其姿态与给定男孩图像中的姿态相同。这一过程中,首先确定男孩的姿态,然后找到合适的模型提取姿态。接着,使用姿态图像模型生成女孩的图像,再使用图像-文本模型得到描述,最后使用文本转语音模型读出描述。这一系列操作展示了AI智能体在规划方面的强大能力。
我们已有 AI 智能体,尽管它们可能挑剔且并非总是可靠,但当它们有效时,效果惊人。使用智能体循环,有时可以解决前期问题。我使用研究智能体处理部分工作,避免长时间的谷歌搜索。多智能体协作模式特别有趣,效果超乎想象。ChatDev 是多智能体系统的一个开源实例,可以扮演不同角色并协作。虽然结果有时不尽如人意,但技术正在改进。此外,多智能体辩论也能带来更好的性能。因此,多个 AI 智能体共同工作是一种强大的设计模式。
总结一下,这些是我看到的模式。我认为如果我们在我们的工作中使用这些模式,我们中的很多人可以很快获得实践上的提升。我认为智能体推理设计模式将会非常重要。这是我的简要 PPT。我预计,今年 AI 能做的事情将大幅扩展,这得益于智能体工作流。
人们往往期望在输入提示后立即得到结果,这是人性使然。然而,对于许多AI智能体工作流,我们需要学会分配任务并耐心等待它们的回应,即使可能需要几分钟或几小时。此外,快速生成大量token对于迭代和优化AI智能体至关重要。尽管使用质量稍低的大模型可能带来争议,但快速生成更多token仍然可以带来良好的结果。
我期待着Claude 4、GPT-5和Gemini 2.0等出色的大模型,我感觉,如果你期待在 GPT-5 上运行你的任务,以零样本的方式,你可能在一些 AI 智能体应用上可以接近那个水平的性能,这可能超乎你的想象,有了智能体推理,再加上之前发布的大模型。我认为这是一个重要的趋势。
通往AGI的道路更像是一段旅程而非目的地,而智能体工作流可以帮助我们在这漫长的旅程中向前迈进。
读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓
👉AI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓