【2025最新】基于大模型的本地知识库搭建(超详细)!

本篇文章将介绍基于大模型来搭建本地知识库的流程。开源工具:MaxKB + Ollama

前排提示,文末有大模型AGI-CSDN独家资料包哦!

安装docker

在官网按需选择桌面版本,安装之后在docker中搜索maxkb的镜像:

搜索maxkb

点击 Run,等镜像下载完成之后,配置参数:

配置container

Volumes 这里,需要配置两个 Host path映射容器的固定目录:

# host path是本机目录,可以随意   /host/path1  ==> /var/lib/postgresql/data   /host/path2  ==> /opt/maxkb/app/sandbox/python-packages

配置好之后,点击 Run,浏览器打开 localhost:8080,就能访问了:

登录页面

输入默认的用户名和密码登录即可:admin / MaxKB@123..

除了可视化配置之外,也可在 Terminal 运行命令启动:

docker run -d --name=maxkb --restart=always -p 5432:8080 \n   -v ~/.maxkb:/var/lib/postgresql/data \n   -v ~/.python-packages:/opt/maxkb/app/sandbox/python-packages \n   cr2.fit2cloud.com/1panel/maxkb

创建知识库

登录之后,点击知识库 --> 创建知识库:

创建知识库

然后选择 Markdown 格式的文档上传:

上传文件

示例的 README.md 是介绍组件 QueryTable组件的使用。可以把需要上传的文档放在同一个目录一起上传,待文件上传完成之后,就完成了知识库的创建。

添加Ollama

物料上传之后,去系统管理 --> 模型设置,配置本地私有模型:

模型设置

maxkb 不仅支持常见的公有模型,也支持Ollama等私有模型。对于非敏感数据,也可以选择线上的公有模型。私有模型我们选择 ollama 进行配置。

先去官网下载 ollama,安装之后可以跑一下中文模型 qwen2.5:

qwen2.5

因为物料都是中文,所以MaxKB也选择中文开源模型 qwen2.5

添加Ollama

API域名用 http://host.docker.internal:11434host.docker.internal 相当于容器内的 locahost11434ollama 模型的默认端口,API Key 随便填一个就行,最后点「添加」:

创建本地模型

如果是线上模型,域名和key就用模型对应的域名和key

创建应用

知识库和本地模型都配置完成之后,就需要创建一个应用将知识库本地模型关联起来:

创建应用

「AI模型」选择刚创建好的本地模型。应用创建好之后,会有一个本地访问连接:

应用界面

打开这个链接,输入问题:QueryTable组件怎么用。可以看到其回复中会引用知识库 component 中的内容:

结果测试

至此,我们已完成基于本地大模型的知识库搭建。

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!
在这里插入图片描述

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

### 构建和部署本地AI大模型知识库 #### 选择合适的工具和技术栈 为了在本地环境中构建和部署AI大模型知识库,可以考虑使用Ollama这样的平台来简化操作流程[^1]。 Ollama允许用户轻松安装并配置大型语言模型,在本地机器上实现高效运行。 #### 配置开发环境 确保计算机具备足够的硬件资源支持(如GPU加速),接着按照官方文档指导完成必要的软件包安装与依赖项设置。对于Python项目而言,创建虚拟环境有助于隔离不同项目的依赖关系: ```bash python3 -m venv my_venv source my_venv/bin/activate pip install --upgrade pip setuptools wheel ``` #### 获取预训练模型 许多开源社区提供了可以直接下载使用的高质量预训练模型权重文件。通过Hugging Face等网站获取所需的大规模自然语言处理模型,并将其保存到指定目录下以便后续加载调用[^2]。 #### 实现基于Web的应用程序接口(API) 为了让最终用户能够方便地与这些强大的AI能力互动交流,建议开发一套RESTful API服务端逻辑作为中介层连接前端界面同后台计算节点之间的通信桥梁。Flask框架因其简洁易懂而成为理想的选择之一: ```python from flask import Flask, request, jsonify import torch from transformers import AutoModelForCausalLM, AutoTokenizer app = Flask(__name__) model_name_or_path = "path/to/local/model" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path).to('cuda') @app.route('/api/chat', methods=['POST']) def chat(): input_text = request.json.get("message", "") inputs = tokenizer(input_text, return_tensors="pt").to('cuda') outputs = model.generate(**inputs) response_message = tokenizer.decode(outputs[0], skip_special_tokens=True) return jsonify({"response": response_message}) if __name__ == "__main__": app.run(host='0.0.0.0', port=8080) ``` 此段代码展示了如何利用Transformers库中的`AutoModelForCausalLM`类实例化一个因果语言生成器对象,并定义了一个简单的HTTP POST请求处理器用于接收客户端发送的消息体内容后返回经过推理产生的回复字符串。 #### 整合检索增强型生成(Retrieval-Augmented Generation,RAG) 如果希望进一步提升对话系统的智能化水平,则可以在上述基础上引入RAG机制——即先从结构化的数据库或非结构化的文本集合中提取最相关的信息片段供LLM参考再给出更加精准的回答方案。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值