看张奇教授的主页,感觉这教授、博导太牛了。
前排提示,文末有大模型AGI-CSDN独家资料包哦!
在大语言模型实践和理论研究的过程中,他与桂韬研究员、郑锐博士生以及黄萱菁教授,历时 8 个月共同完成了这本书《大规模语言模型·从理论到实践》!
本书围绕大语言模型构建的四个主要阶段:预训练、有监督微调、奖励建模和强化学习,详细介绍各阶段使用的算法、数据、难点以及实践经验。
预训练阶段需要利用包含数千亿甚至数万亿单词的训练数据,并借助由数千块高性能GPU 和高速网络组成的超级计算机,花费数十天完成深度神经网络参数的训练。这一阶段的难点在于如何构建训练数据,以及如何高效地进行分布式训练。
有监督微调阶段利用少量高质量的数据集,其中包含用户输入的提示词和对应的理想输出结果。这个阶段是从语言模型向对话模型转变的关键,其核心难点在于如何构建训练数据,包括训练数据内部多个任务之间的关系、训练数据与预训练之间的关系及训练数据的规模。
奖励建模阶段的目标是构建一个文本质量对比模型,用于对有监督微调模型对于同一个提示词给出的多个不同输出结果进行质量排序。这一阶段的难点在于如何限定奖励模型的应用范围及如何构建训练数据。
强化学习阶段,根据数十万提示词,利用前一阶段训练的奖励模型,对有监督微调模型对用户提示词补全结果的质量进行评估,与语言模型建模目标综合得到更好的效果。这一阶段的难点在于解决强化学习方法稳定性不高、超参数众多及模型收敛困难等问题。
希望这本书能够帮助读者快速入门大语言模型的研究和应用,并解决相关技术挑战。
扫码领取书籍PDF版本:
读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!
👉AI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓