一文了解大模型的主要应用领域和就业岗位

一、大模型的主要应用领域

前排提示,文末有大模型AGI-CSDN独家资料包哦!

1、自然语言处理(NLP):
  • 文本生成:生成自然流畅的文本,如文章、小说、新闻等。
  • 翻译系统:提供高质量的跨语言翻译服务。
  • 问答系统:回答用户问题,提供准确、相关的答案。
  • 情感分析:判断文本中的情感倾向。

在这里插入图片描述

2、计算机视觉(CV):
  • 图像分类:识别图像中的物体和场景,并进行分类。
  • 目标检测:定位图像中的特定物体,并给出其位置和类别信息。
  • 图像生成:生成逼真的图像,如风格迁移、图像超分辨率增强等。
  • 人脸识别:在安全验证和身份识别领域的应用。
3、自动驾驶:
  • 物体检测:在复杂道路环境中识别车辆、行人等障碍物。
  • 路径规划:根据路况和目的地规划最优行驶路线。
  • 决策制定:在紧急情况下快速做出智能决策,确保行车安全。
4、金融:
  • 市场预测和分析:分析市场数据,识别趋势和模式,辅助投资决策。
  • 风险评估:预测贷款违约和金融欺诈等风险事件。
  • 智能投顾:提供个性化的投资建议和资产配置方案。

在这里插入图片描述

5、医疗领域:
  • 医疗影像诊断:辅助医生识别CT、MRI图像中的异常病变。
  • 医疗数据分析:用于医疗数据分析和药物研发等领域。

在这里插入图片描述

6、教育领域:
  • 个性化学习推荐:为学生提供个性化学习建议。
  • 智能辅导:提供作业辅导。
7、城市治理和智能制造:
  • 城市治理:中国联通的元景大模型在城市治理领域处于试点示范期。
  • 智能制造:在智能制造领域,大模型展现出提升效率和优化决策的潜力。

二、大模型就业岗位

1. AI大模型开发工程师

AI模型开发工程师负责设计、开发和优化AI大模型。他们的工作包括但不限于:

  • 技术需求分析:与业务团队合作,了解业务需求,并将其转化为技术需求。
  • 架构设计:设计高效、可扩展和可维护的人工智能系统架构。
  • 技术实施:编写高质量的代码,实现人工智能系统的核心功能。
  • 技术创新:跟踪人工智能领域的最新技术和趋势,推动技术创新。

在这里插入图片描述

2. 算法工程师

算法工程师研究和实现各类AI算法,包括深度学习、自然语言处理、计算机视觉等,为AI大模型提供技术支持。他们的工作内容涉及:

  • AI技术研究:了解相关的AI技术,包括机器学习、深度学习、自然语言处理等,并将其运用到公司的业务中。
  • 模型训练和测试:利用AI技术训练和测试模型,然后将其应用于系统,以增加其功能和性能。

在这里插入图片描述

3. AI应用开发工程师

AI应用开发工程师将AI大模型应用于实际场景中,开发各种AI产品和服务。他们的职责包括:

  • 负责使用自然语言处理技术进行智能问答的实现和落地工作。
  • 对数据进行清洗和分析,挖掘其中的问题并给出相应的解决方案。
  • 利用机器学习算法,结合已有的知识库完成各种智能问答系统的需求设计及搭建。

在这里插入图片描述

4. AI平台架构师

AI平台架构师负责构建和维护AI平台,为AI大模型的训练、部署和推理提供高效、稳定的支持。他们的工作内容包括:

  • 技术需求分析:与业务团队合作,了解业务需求,并将其转化为技术需求。
  • 架构设计:设计高效、可扩展和可维护的人工智能系统架构。
  • 技术实施:编写高质量的代码,实现人工智能系统的核心功能。

在这里插入图片描述

5. AI产品经理

AI产品经理负责协调和管理人工智能驱动的产品的开发、优化和市场落地。他们的职责包括:

  • 需求分析:通过市场调研和用户反馈,识别和定义用户需求。
  • 产品规划与设计:制定AI产品的长期战略、功能规划和路线图。
  • 跨部门协调:与数据科学家、机器学习工程师、软件开发团队和UI/UX设计师紧密合作。
  • 模型训练与优化:参与机器学习模型的选择与训练过程,与数据科学家合作,确保模型性能达到产品需求的要求。

在这里插入图片描述

这些岗位在AI大模型的应用领域中需求较多,为就业市场提供了广泛的机遇。

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!
在这里插入图片描述

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

### RAG模型概述 RAG(Retrieval-Augmented Generation)是一种融合了检索增强机制的生成型语言模型,由Facebook AI研究院(FAIR)提出。这种架构通过结合传统的基于检索的方法现代的语言生成技术来提升自然语言处理任务的效果[^3]。 ### 工作原理详解 #### 数据获取阶段 在数据准备过程中,RAG利用外部知识库作为补充资源。当接收到输入查询时,系统首先会在预先构建的知识图谱或其他形式的大规模语料库中执行信息检索操作,找到最有可能帮助完成当前对话或任务的相关片段。 #### 动态上下文集成 不同于静态预训练模式下的纯生成方式,在线检索到的具体实例会被即时融入到解码器端口处,使得每次预测都能依据最新获得的真实世界证据来进行调整优化。这一特性赋予了RAG更强的情境适应能力,尤其是在面对开放领域问答、多轮次交互式聊天等复杂场景下表现尤为突出。 #### 双重评分机制 为了确保最终输出的质量,RAG采用了两步走策略:先是从候选集中挑选出若干高质量的回答选项;再经过一轮精细评估后决定最佳回复方案。具体来说就是分别计算每条建议得分——一方面考量它与原始请求之间的匹配度;另一方面也要顾及内部连贯性逻辑一致性等因素。 ```python def rag_model_inference(query, knowledge_base): retrieved_docs = retrieve_relevant_documents(query, knowledge_base) generated_responses = [] for doc in retrieved_docs: response = generate_response_based_on_document(doc) generated_responses.append(response) best_response = select_best_response(generated_responses) return best_response ``` ### 应用案例分析 实际应用方面,《大模型RAG实战:RAG原理、应用与系统构建》一书中提供了丰富的实践指导技术细节解析,涵盖了从理论基础到工程实现再到部署上线全流程的内容介绍。对于希望深入了解并掌握这项前沿技术的研究人员而言,这本书籍无疑是一个宝贵的学习资料来源[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值